Objective: To evaluate the effect of imatinib mesylate on cell viability, anti cancer effect through modulation of KAI1/CD82 gene expression in breast cancer MCF-7 cell line.Methods: The effects of imatinib mesylate o...Objective: To evaluate the effect of imatinib mesylate on cell viability, anti cancer effect through modulation of KAI1/CD82 gene expression in breast cancer MCF-7 cell line.Methods: The effects of imatinib mesylate on cell viability in MCF-7 cell line were assessed using MTT assay and IC_(50) value was determined. GAPDH and KAI1/CD82 were selected as reference and target genes, respectively. Quantitative real time PCR technique was applied for investigation of KAI1/CD82 gene expression in human breast cancer MCF-7 cells. Subsequently, the quantity of KAI1 compared to GAPDH gene expressions were analyzed using the formula; 2^(-DDCt).Results: Imatinib was showed to have a dose-dependent inhibitory effect on the viability of MCF-7 cells. CD82/GAPDH gene expression ratios were 1.322 ± 0.030(P > 0.05),2.052 ± 0.200(P < 0.05), 2.151 ± 0.270(P < 0.05) for 10, 20 and 40 mmol/L of imatinib concentrations.Conclusions: Based on the present data, imatinib mesylate might modulate metastasis by up-regulating KAI1/CD82 gene expression in human breast MCF-7 cancer cell line.展开更多
Ocimum basilicum is widely distributed in the tropical and subtropical regions of the world, with greatest variability in Africa and India. It is valued in many countries for its culinary, medicinal, industrial and re...Ocimum basilicum is widely distributed in the tropical and subtropical regions of the world, with greatest variability in Africa and India. It is valued in many countries for its culinary, medicinal, industrial and religious importance. Although cytogenetic entries on the plant have been made in other geographical locations of the world, in Nigeria, such entries, prior to this report, have been limited if not completely unavailable. In this analysis, axillary buds, obtained from growing plants, were used to conduct mitotic study. Results from this study showed chromosome counts of 2n = 48 and 60, thus bringing to light the existence of chromosome number variation and the possibility of polyploidy at different levels in the plant species in this agro-ecological zone. This research has, therefore, established that at least there are two cytotypes in the population of Ocimum basilicum growing in the humid forest vegetation zone of Nigeria. Analysis of the two cytotypes revealed asymmetrical karyotypes, indicative of advancement in the evolutionary trend of the plant species.展开更多
Rice<b> </b><span style="font-family:Verdana;">is a major cereal crop providing food and energy to more than half of world’s population and drought is a challenging abiotic stress limiting...Rice<b> </b><span style="font-family:Verdana;">is a major cereal crop providing food and energy to more than half of world’s population and drought is a challenging abiotic stress limiting rice production</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> Engineering drought tolerance trait is a major bottle neck because of multigenic control and complex nature. Two promising candidate genes utilized in engineering drought tolerance include DREB2A transcription factor (a master regulator of downstream stress inducible genes) and APX (an important ROS scavenging enzyme). Overexpression of DREB genes ha</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> shown encouraging results but with </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">negative impact on plant morphology and production. Moreover, co-expression of DREB2A and APX genes</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;"> influence on drought stress has not been studied. Hence, in the present study</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> overexpression of single genes DREB2A or APX and co-expression of these genes were studied for enhancement of drought tolerance in indica rice. Both genes under control of CaMV 35S promoter were transferred by </span><i><span style="font-family:Verdana;">Agrobacterium</span></i><span style="font-family:Verdana;"> transformation into rice variety BPT5204 popular for slender grains in South India. Confirmation of T-DNA integration into rice genome was done with PCR analysis of transgenes. Homozygous transgenic lines of DREB2A, </span><span><span style="font-family:Verdana;">APX and DREB2A-APX generated in T</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> generation were evaluated for</span></span><span style="font-family:Verdana;"> drought tolerance during seed germination, vegetative and reproductive stages. In seed germination stage, transgenic lines exhibited higher germination rates on 200</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mM mannitol MS medium in comparison to WT</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> In vegetative stage, with-holding water for 7 days transgenic lines exhibited higher chlorophyll, proline, reducing sugars and enhanced activities of APX, SOD and catalase enzymes as well as reduced MDA content. The qRT-PCR analysis revealed higher relative transgene expression under drought stress. In reproductive stage, before maturity with-holding water for 7 days and restoring normal conditions</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> transgenic lines developed longer panicles and </span><span style="font-family:Verdana;">a </span><span style="font-family:;" "=""><span style="font-family:Verdana;">higher number </span><span style="font-family:Verdana;">of grains/plant compared to WT. The overall results indicate that</span><span style="font-family:Verdana;"> co-expression of DREB2A and APX can provide enhanced drought tolerance in rice plants to combat climate change conditions.</span></span>展开更多
The core collection of red-seeded winter hexaploid triticale with different pre-harvest sprouting (PHS) resistance has been evaluated for the allelic structure of the gene VIVIPAROUS-1B (Vp-1B) with STS molecular mark...The core collection of red-seeded winter hexaploid triticale with different pre-harvest sprouting (PHS) resistance has been evaluated for the allelic structure of the gene VIVIPAROUS-1B (Vp-1B) with STS molecular marker. The discovered structure of the collection was as follows: 50.0% and 41.7% of the collection carries Vp-1Bа and Vp-1Bc alleles, respectively, while 8,3% possesses both of them. As a result of the seed color estimation, the collection has been divided into two groups: with dark red seeds and light red seeds. The allele Vp-1Bc has appeared to be associated with PHS resistance while Vp-1Ba with PHS susceptibility in the triticale accessions with light red seeds only. The influence of the seed color and allelic state of Vp-1B on PHS resistance in triticale is discussed.展开更多
Yam mosaic virus (YMV), a Potyvirus, is a highly destructive pathogen of yam accounting for yield losses up to 40%. Apart from causing significant reduction in tuber size and quality, it restricts international exchan...Yam mosaic virus (YMV), a Potyvirus, is a highly destructive pathogen of yam accounting for yield losses up to 40%. Apart from causing significant reduction in tuber size and quality, it restricts international exchange of germplasms. It thus becomes crucial to get resistant or at least virus-free planting materials for farmers. This study was aimed at inducing resistance to YMV in tobacco by RNA silencing. An RNAi construct containing 161 bp fragment of <span style="font-family:Verdana;">YMV-coat protein (CP) </span><span style="font-family:Verdana;">gene was developed and used to produce transgenic tobacco lines expressing </span><span style="font-family:Verdana;">YMV-coat protein (CP)</span><span style="font-family:Verdana;"> derived </span><span style="font-family:Verdana;">double stranded RNA (dsRNA)</span><span style="font-family:""><span style="font-family:Verdana;"> via </span><i><span style="font-family:Verdana;">Agrobacterium</span></i><span style="font-family:Verdana;">-mediated transformation. Of the eight T</span><sub><span style="font-family:Verdana;">1</span></sub><span style="font-family:Verdana;"> transgenic lines inoculated with YMV, six (L1, L2, L3, L5, L7 and L8) showed immunity to YMV as no symptoms were detected, whereas two (L4 and L10) exhibited high resistance with mild symptoms limited to inoculation portions. No virus could be detected in uninoculated new leaves of the transgenic lines after RT-PCR and qPCR analyses of </span></span><span style="font-family:Verdana;">YMV-coat protein (CP)</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">The presence of small interfering RNAs in transgenic</span><span style="font-family:MinionPro-Capt;"> </span><span style="font-family:Verdana;">lines after virus challenge indicates</span><span style="font-family:Verdana;"> that the resistance was acquired through RNA silencing.</span>展开更多
基金Supported by East Tehran Branch,Islamic Azad University(Grant No.923064)
文摘Objective: To evaluate the effect of imatinib mesylate on cell viability, anti cancer effect through modulation of KAI1/CD82 gene expression in breast cancer MCF-7 cell line.Methods: The effects of imatinib mesylate on cell viability in MCF-7 cell line were assessed using MTT assay and IC_(50) value was determined. GAPDH and KAI1/CD82 were selected as reference and target genes, respectively. Quantitative real time PCR technique was applied for investigation of KAI1/CD82 gene expression in human breast cancer MCF-7 cells. Subsequently, the quantity of KAI1 compared to GAPDH gene expressions were analyzed using the formula; 2^(-DDCt).Results: Imatinib was showed to have a dose-dependent inhibitory effect on the viability of MCF-7 cells. CD82/GAPDH gene expression ratios were 1.322 ± 0.030(P > 0.05),2.052 ± 0.200(P < 0.05), 2.151 ± 0.270(P < 0.05) for 10, 20 and 40 mmol/L of imatinib concentrations.Conclusions: Based on the present data, imatinib mesylate might modulate metastasis by up-regulating KAI1/CD82 gene expression in human breast MCF-7 cancer cell line.
文摘Ocimum basilicum is widely distributed in the tropical and subtropical regions of the world, with greatest variability in Africa and India. It is valued in many countries for its culinary, medicinal, industrial and religious importance. Although cytogenetic entries on the plant have been made in other geographical locations of the world, in Nigeria, such entries, prior to this report, have been limited if not completely unavailable. In this analysis, axillary buds, obtained from growing plants, were used to conduct mitotic study. Results from this study showed chromosome counts of 2n = 48 and 60, thus bringing to light the existence of chromosome number variation and the possibility of polyploidy at different levels in the plant species in this agro-ecological zone. This research has, therefore, established that at least there are two cytotypes in the population of Ocimum basilicum growing in the humid forest vegetation zone of Nigeria. Analysis of the two cytotypes revealed asymmetrical karyotypes, indicative of advancement in the evolutionary trend of the plant species.
文摘Rice<b> </b><span style="font-family:Verdana;">is a major cereal crop providing food and energy to more than half of world’s population and drought is a challenging abiotic stress limiting rice production</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> Engineering drought tolerance trait is a major bottle neck because of multigenic control and complex nature. Two promising candidate genes utilized in engineering drought tolerance include DREB2A transcription factor (a master regulator of downstream stress inducible genes) and APX (an important ROS scavenging enzyme). Overexpression of DREB genes ha</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> shown encouraging results but with </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">negative impact on plant morphology and production. Moreover, co-expression of DREB2A and APX genes</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;"> influence on drought stress has not been studied. Hence, in the present study</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> overexpression of single genes DREB2A or APX and co-expression of these genes were studied for enhancement of drought tolerance in indica rice. Both genes under control of CaMV 35S promoter were transferred by </span><i><span style="font-family:Verdana;">Agrobacterium</span></i><span style="font-family:Verdana;"> transformation into rice variety BPT5204 popular for slender grains in South India. Confirmation of T-DNA integration into rice genome was done with PCR analysis of transgenes. Homozygous transgenic lines of DREB2A, </span><span><span style="font-family:Verdana;">APX and DREB2A-APX generated in T</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> generation were evaluated for</span></span><span style="font-family:Verdana;"> drought tolerance during seed germination, vegetative and reproductive stages. In seed germination stage, transgenic lines exhibited higher germination rates on 200</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mM mannitol MS medium in comparison to WT</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> In vegetative stage, with-holding water for 7 days transgenic lines exhibited higher chlorophyll, proline, reducing sugars and enhanced activities of APX, SOD and catalase enzymes as well as reduced MDA content. The qRT-PCR analysis revealed higher relative transgene expression under drought stress. In reproductive stage, before maturity with-holding water for 7 days and restoring normal conditions</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> transgenic lines developed longer panicles and </span><span style="font-family:Verdana;">a </span><span style="font-family:;" "=""><span style="font-family:Verdana;">higher number </span><span style="font-family:Verdana;">of grains/plant compared to WT. The overall results indicate that</span><span style="font-family:Verdana;"> co-expression of DREB2A and APX can provide enhanced drought tolerance in rice plants to combat climate change conditions.</span></span>
文摘The core collection of red-seeded winter hexaploid triticale with different pre-harvest sprouting (PHS) resistance has been evaluated for the allelic structure of the gene VIVIPAROUS-1B (Vp-1B) with STS molecular marker. The discovered structure of the collection was as follows: 50.0% and 41.7% of the collection carries Vp-1Bа and Vp-1Bc alleles, respectively, while 8,3% possesses both of them. As a result of the seed color estimation, the collection has been divided into two groups: with dark red seeds and light red seeds. The allele Vp-1Bc has appeared to be associated with PHS resistance while Vp-1Ba with PHS susceptibility in the triticale accessions with light red seeds only. The influence of the seed color and allelic state of Vp-1B on PHS resistance in triticale is discussed.
文摘Yam mosaic virus (YMV), a Potyvirus, is a highly destructive pathogen of yam accounting for yield losses up to 40%. Apart from causing significant reduction in tuber size and quality, it restricts international exchange of germplasms. It thus becomes crucial to get resistant or at least virus-free planting materials for farmers. This study was aimed at inducing resistance to YMV in tobacco by RNA silencing. An RNAi construct containing 161 bp fragment of <span style="font-family:Verdana;">YMV-coat protein (CP) </span><span style="font-family:Verdana;">gene was developed and used to produce transgenic tobacco lines expressing </span><span style="font-family:Verdana;">YMV-coat protein (CP)</span><span style="font-family:Verdana;"> derived </span><span style="font-family:Verdana;">double stranded RNA (dsRNA)</span><span style="font-family:""><span style="font-family:Verdana;"> via </span><i><span style="font-family:Verdana;">Agrobacterium</span></i><span style="font-family:Verdana;">-mediated transformation. Of the eight T</span><sub><span style="font-family:Verdana;">1</span></sub><span style="font-family:Verdana;"> transgenic lines inoculated with YMV, six (L1, L2, L3, L5, L7 and L8) showed immunity to YMV as no symptoms were detected, whereas two (L4 and L10) exhibited high resistance with mild symptoms limited to inoculation portions. No virus could be detected in uninoculated new leaves of the transgenic lines after RT-PCR and qPCR analyses of </span></span><span style="font-family:Verdana;">YMV-coat protein (CP)</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">The presence of small interfering RNAs in transgenic</span><span style="font-family:MinionPro-Capt;"> </span><span style="font-family:Verdana;">lines after virus challenge indicates</span><span style="font-family:Verdana;"> that the resistance was acquired through RNA silencing.</span>