A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,G...A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,Gudongkou and Honghuayuan sections)and Jiangnan regions(Nanba section)was created based on lithofacies and major element analysis.Three siliciclastic(LF1–3)and six carbonate(LF4–9)lithofacies are recognized representing sediments that were deposited in mixed siliciclastic and carbonate ramp environment.The intensity of mixed sedimentation and terrigenous input were evaluated using the elemental proxies Intensity of Mixed sedimentation(IM)and Aluminum Accumulation Rate(Al AR),as well as their mean values during certain time intervals.Mixed sediments are most well-developed along the marginal Yangtze region,strongly impacted by recurrent influx of westerly derived terrigenous materials in response to global eustatic changes and regional tectonic movements,shaping the gently southeast-dipping morphology.Regular terrigenous influx resulted in periods of enhanced primary productivity on the Yangtze Ramp as evidenced by matching biodiversity peaks in planktonic organisms,i.e.,chitinozoans and acritarchs.Brachiopods and other shelly fauna were also able to proliferate as new niches developed along the gently dipping ramp floor with substrate changes.The biodiversification patterns suggest that terrigenous influx controlled in part by regional tectonics played a more important role than previously thought in the development of Great Ordovician Biodiversification Event in South China.展开更多
Abstract Greenstone belts of the eastern Dharwar Craton, India are reinterpreted as composite tecto- nostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new hig...Abstract Greenstone belts of the eastern Dharwar Craton, India are reinterpreted as composite tecto- nostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new high-precision elemental data. The former are dominated by a komatiite plus Mg-tholeiitic basalt volcanic association, with deep water siliciclastic and banded iron formation (BIF) sedimentary rocks. Plumes melted at 〈90 km under thin rifted continental lithosphere to preserve intrao- ceanic and continental margin aspects. Associated alkaline basalts record subduction-recycling of Me- soarchean oceanic crust, incubated in the asthenosphere, and erupted coevally with Mg basalts from a heterogeneous mantle plume. Together, komatiites-Mg basalts-alkaline basalts plot along the Phanero- zoic mantle array in Th/Yb versus Nb/Yb coordinate space, representing zoned plumes, establishing that these reservoirs were present in the Neoarchean mantle. Convergent margin magmatic associations are dominated by tholeiitic to calc-alkaline basalts compo- sitionally similar to recent intraoceanic arcs. As well, boninitic flows sourced in extremely depleted mantle are present, and the association of arc basalts with Mg-andesites-Nb enriched basalts-adakites documented from Cenozoic arcs characterized by subduction of young (〈20 Ma), hot, oceanic litho- sphere. Consequently, Cenozoic style "hot" subduction was operating in the Neoarchean. These diverse volcanic associations were assembled to give composite terranes in a subduction-accretion orogen at -2.7 Ga, coevally with a global accretionary orogen at -2.7 Ga, and associated orogenic gold mineralization.展开更多
Quartz grains in contact with uranium-bearing minerals or fluids are characterized by natural radiation-induced paramagnetic defects (e. g. , oxygen vacancy centers, silicon vacancy centers, and peroxy radicals), wh...Quartz grains in contact with uranium-bearing minerals or fluids are characterized by natural radiation-induced paramagnetic defects (e. g. , oxygen vacancy centers, silicon vacancy centers, and peroxy radicals), which are amenable to study by electron paramagnetic resonance (EPR) spectroscopy. These natural radiation-induced paramagnetic defects, except for the oxygen vacancy centers, in quartz are concentrated in narrow bands penetrated by α particles: (1) in halos around U- and Th-bearing mineral inclusions and (2) in outer rims or along fractures. The second type of occurrence provides information about uranium mineralization or remobilization (i. e. , sources of uranium, timing of mineralization or remobilization, pathways of uranium-bearing fluids). It can also be used to evaluate sedimentary basins for potential of uranium mineralization. In particular, the peroxy radicals are stable up to 800℃ and, therefore, are useful for evaluating metasedimentary rocks (e. g. , Paleoproterozoic metasedimentary sequences in the central zone of the North China craton). EPR study of the Changcheng Series can focus on quartz from the sediment-basement unconformity and faults to determine the presence and types of natural radiation-induced paramagnetic defects, with which to identify and prioritize uranium anomalies. Other potential applications of natural radiation-induced paramagnetic defects in quartz include uranium-bearing hydrocarbon deposits in sedimentary basins. For example, the Junggar, Ordos, and Tarim basins in northwestern China all contain important oil and natural gas fields and are well known for elevated uranium concentrations, including economic sandstone-hosted uranium deposits. Therefore, systematic studies on the distribution of natural radiation-induced paramagnetic defects in quartz from host sedimentary sequences are expected to provide information about the migration of oil and natural gas in those basins.展开更多
There are six distinct classes of gold deposits, each represented by metallogenic provinces, having 100's to > 1 000 tonne gold production. The deposit classes are: (1) erogenic gold; (2) Carlin and Carlin-like...There are six distinct classes of gold deposits, each represented by metallogenic provinces, having 100's to > 1 000 tonne gold production. The deposit classes are: (1) erogenic gold; (2) Carlin and Carlin-like gold deposits; (3) epithermal gold-silver deposits; (4) copper-gold porphyry deposits; (5) iron-oxide copper-gold deposits; and (6) gold-rich volcanic hosted massive sul-fide (VMS) to sedimentary exhalative (SEDEX) deposits. This classification is based on ore and alteration mineral assemblages; ore and alteration metal budgets; ore fluid pressure(s) and compositions; crustal depth or depth ranges of formation; relationship to structures and/or magmatic intrusions at a variety of scales; and relationship to the P-T-t evolution of the host terrane. These classes reflect distinct geodynamic settings. Orogenic gold deposits are generated at mid-crustal (4-16 km) levels proximal to terrane boundaries, in transpressional subduction-accretion complexes of Cordilleran style erogenic belts; other orogenic gold provinces form inboard by delamina-tion of mantle lithosphere, or plume impingement. Carlin and Carlin-like gold deposits develop at shallow crustal levels (< 4 km) in extensional convergent margin continental arcs or back arcs; some provinces may involve asthenosphere plume impingement on the base of the lithosphere. Epithermal gold and copper-gold porphyry deposits are sited at shallow crustal levels in continental margin or intraoceanic arcs. Iron oxide copper-gold deposits form at mid to shallow crustal levels; they are associated with extensional intracratonic anorogenic magmatism. Proterozoic examples are sited at the transition from thick refractory Archean mantle lithosphere to thinner Proterozoic mantle lithosphere. Gold-rich VMS deposits are hydrothermal accumulations on or near the sea-floor in continental or intraoceanic back arcs.The compressional tectonics of orogenic gold deposits is generated by terrane accretion; high heat flow stems from crustal thickening, delamination of overthickened mantle lithosphere inducing advection of hot asthenosphere, or asthenosphere plume impingement. Ore fluids advect at lithostatic pressures. The extensional settings of Carlin, epithermal, and copper-gold porphyry deposits result from slab rollback driven by negative buoyancy of the subducting plate, and associated induced convection in asthenosphere below the over-riding lithospheric plate. Extension thins the lithosphere, advecting asthenosphere heat, promotes advection of mantle lithosphere and crustal magmas to shallow crustal levels, and enhances hydraulic conductivity. Siting of some copper-gold porphyry deposits is controlled by arc parallel or orthogonal structures that in turn reflect deflections or windows in the slab. Ore fluids in Carlin and epithermal deposits were at near hydrostatic pressures, with unconstrained magmatic fluid input, whereas ore fluids generating porphyry copper-gold deposits were initially magmatic and lithostatic, evolving to hydrostatic pressures. Fertilization of previously depleted sub-arc mantle lithosphere by fluids or melts from the subducting plate, or incompatible element enriched asthenosphere plumes, is likely a factor in generation of these gold deposits. Iron oxide copper-gold deposits involve prior fertilization of Ar-chean mantle lithosphere by incompatible element enriched asthenospheric plume liquids, and subsequent intracontinental anorogenic magmatism driven by decompressional extension from far-field plate forces. Halogen rich mantle lithosphere and crustal magmas likely are the causative intrusions for the deposits, with a deep crustal proximal to shallow crustal distal association. Gold-rich VMS deposits develop in extensional geodynamic settings, where thinned lithosphere extension drives high heat flow and enhanced hydraulic conductivity, as for epithermal deposits. Ore fluids induced hydrostatic convection of modified seawater, with unconstrained magmatic input. Some gold-rich VMS deposits with an epithermal metal budget may be submarine counterparts of ter展开更多
As an effective tracer, nitrogen isotopes have been used to determine the source of ore materials in recent years. In this study, the nitrogen isotopes and contents were measured on K-feldspar and sericite of gold dep...As an effective tracer, nitrogen isotopes have been used to determine the source of ore materials in recent years. In this study, the nitrogen isotopes and contents were measured on K-feldspar and sericite of gold deposits and some related granitic intrusions in Jiaodong, Xiao-qinling-Xiong’ershan, west Qinling, the west part of North Qilian and the Zhangjiakou-Xuanhua district around the North China craton (NCC). Although the gold deposits around the NCC are hosted in Precambrian metamorphic rocks, Phanerozoic sedimentary rocks, mafic volcanic rocks or granite, comparison of which with the nitrogen contents and isotope data of previous studies on mantle-derived rocks, granites, metamorphic rocks and gold deposits indicates that those deposits are closely related to granitic rocks. In addition, mantle-derived materials may have been involved in the ore-forming processes to a certain degree. This conclusion is consistent with the result of previous hydrogen, oxygen and carbon isotopic studies of those gold deposits.展开更多
The nature and evolution of the Proto-Tethys Ocean originated from the breakup of the supercontinent Rodinia remain controversial. Early Paleozoic magmatism and metamorphism can pro- vide important constraints on the ...The nature and evolution of the Proto-Tethys Ocean originated from the breakup of the supercontinent Rodinia remain controversial. Early Paleozoic magmatism and metamorphism can pro- vide important constraints on the closure of the Proto-Tethys Ocean. This paper reports on a set of geological, petrographical, geochronological, mineralogical and geochemical data for Early Paleozoic granite, gabbro, granulite and granitic leucosome in the northern Wulan terrane of the Quanji Massif. Zircon LA-ICP-MS U-Pb dating reveals two episodes of magmatism, with the emplacement of a gran- itic pluton at 476.7±2.8 Ma and a gabbroic dike at 423±2 Ma. Whole-rock geochemistry suggests an arc affinity for the magma of the granitic pluton but a post-collisional extension setting for the gabbroic dike. Zircon LA-ICP-MS U-Pb dating also shows that the peak granulite-facies metamorphism and anatexis occurred at --475 Ma, coeval with the formation of the granitic pluton in the Quanji Massif as well as the early lawsonite-bearing eclogites in the North Qaidam high-pressure and ultrahigh-pressure (HP-UHP) metamorphic belt to the south. The granulite-facies metamorphism with peak P-T condi- tions at 718-729 ℃ and 0.46-0.53 GPa is characterized by an anticlockwise P-T path. Our data provide compelling evidence for Early Paleozoic paired metamorphic belts with HP-UHP metamorphism in the North Qaidam to the south and low PIT metamorphism in the Quanji Massif as a continental arc to the north, hence suggesting a northward subduction polarity for the Proto-Tethys oceanic plate. The intrusion of the post-collisional gabbroic dike supports for the closure of the Proto-Tethys Ocean in north- western China before 423 Ma.展开更多
We carried out SHRIMP zircon U-Pb dating on A-type granitic intrusions from the Namaqua-Natal Province,South Africa,Sverdrupfjella,western Dronning Maud Land,Antarctica and the Nampula Province of northern Mozambique....We carried out SHRIMP zircon U-Pb dating on A-type granitic intrusions from the Namaqua-Natal Province,South Africa,Sverdrupfjella,western Dronning Maud Land,Antarctica and the Nampula Province of northern Mozambique.Zircon grains in these granitic rocks are typically elongated and oscillatory zoned,suggesting magmatic origins.Zircons from the granitoid intrusions analyzed in this study suggest^1025-1100 Ma ages,which confirm widespread Mesoproterozoic A-type granitic magmatism in the Namaqua-Natal(South Africa),Maud(Antarctica)and Mozambique metamorphic terrains.No older inherited(e.g.,~2500 Ma Achean basement or^1200 Ma island are magmatism in northern Natal)zircon grains were seen.Four plutons from the Natal Belt(Mvoti Pluton,Glendale Pluton,Kwalembe Pluton,Ntimbankulu Pluton)display 1050-1040 Ma ages,whereas the Nthlimbitwa Pluton in northern Natal indicates older 1090-1080 Ma ages.A sample from Sverdrupfjella,Antarctica has^1091 Ma old zircons along with^530 Ma metamorphic rims.Similarly,four samples analysed from the Nampula Province of Mozambique suggest crystallization ages of^1060-1090 Ma but also show significant discordance with two samples showing younger^550 Ma overgrowths.None of the Natal samples show any younger overgrowths.A single sample from southwestern Namaqualand yielded an age of^1033 Ma.Currently available chronological data suggest magmatism took place in the Namaqua-Natal-MaudMozambique(NNMM)belt between^1025 Ma and^1100 Ma with two broad phases between^1060-1020 Ma and 1100-1070 Ma respectively,with peaks at between^1030-1040 Ma and^1070-1090 Ma.The age data from the granitic intrusions from Namaqualand.combined with those from Natal,Antarctica and Mozambique suggest a crude spatial-age relationship with the older>1070 Ma ages being largely restricted close to the eastern and western margins of the Kalahari Craton in northern Natal,Mozambique.Namaqualand and WDML Antarctica whereas the younger<1060 Ma ages dominate in southern Natal and western Namaqualand and are largely restricted to the southern and possibly the western margins of the Kalahari Craton.The older ages of magmatism partially overlap with or are marginally younger than the intracratonic Mkondo Large lgneous Provinee intruded into or extruded onto the Kalahari Craton,suggesting a tectonic relationship with the Maud Belt.Similar ages from granitic augen gneisses in Sri Lanka suggest a continuous belt stretching from Namaqualand to Sri Lanka in a reconstituted Gondwana,formed during the terminal stages of amalgamation of Rodinia and predating the East African Orogen.This contiguity contributes to defining the extent of Rodinia-age crustal blocks,subsequently fragmented by the dispersal of Rodinia and Gondwana.展开更多
Oxyegen and carbon isotopic ratios in the Quatermary-Pliocene,Pleistocene and Eocene Benthonic foraminiferahave been investigated from a single core drilled inthe East
Arsenic contamination is a major environmental issue,as it may lead to serious health hazard.The reduced trivalent formof inorganic arsenic,arsenite,is in generalmore toxic to plants comparedwith the fully oxidized pe...Arsenic contamination is a major environmental issue,as it may lead to serious health hazard.The reduced trivalent formof inorganic arsenic,arsenite,is in generalmore toxic to plants comparedwith the fully oxidized pentavalent arsenate.Theuptakeof arsenite inplants hasbeenshown tobemediatedthrough a large subfamily of plant aquaglyceroporins,nodulin 26-like intrinsic proteins(NIPs).However,the efflux mechanisms,as well as themechanismof arsenite-induced root growth inhibition,remain poorly understood.Usingmolecular physiology,synchrotron imaging,and root transport assay approaches,we show that the cellular transport of trivalent arsenicals inArabidopsis thalianais stronglymodulatedbyPINFORMED2(PIN2)auxin efflux transporter.Root transport assay using radioactive arsenite,X-ray fluorescence imaging(XFI)coupled with X-ray absorption spectroscopy(XAS),and inductively coupled plasma mass spectrometry analysis revealed that pin2 plants accumulate higher concentrations of arsenite in roots comparedwith the wild-type.At the cellular level,arsenite specifically targets intracellular sorting of PIN2 and thereby alters the cellular auxin homeostasis.Consistently,loss of PIN2 function results in arsenite hypersensitivity in roots.XFI coupled with XAS further revealed that loss of PIN2 function results in specific accumulation of arsenical species,but not the other metals such as iron,zinc,or calcium in the root tip.Collectively,these results suggest that PIN2 likely functions as an arsenite efflux transporter for the distribution of arsenical species in planta.展开更多
Carbonate melts at high pressure and temperature conditions are crucial to the deep carbon cycle and play critical roles in the dynamics and evolution of Earth’s mantle.Melting of carbon-bearing rocks,which generates...Carbonate melts at high pressure and temperature conditions are crucial to the deep carbon cycle and play critical roles in the dynamics and evolution of Earth’s mantle.Melting of carbon-bearing rocks,which generates carbonatitic and carbonated silicate melts in the mantle,has been suggested as the primary agents for the outgassing of carbon from Earth’s interior dictating the deep carbon cycle.展开更多
基金funded by National Natural Science Foundation of China(Grant Nos.42102130,41972011)Natural Science Foundation of Jiangsu Province(Grant No.BK20191101)+2 种基金Chinese Academy of Sciences(Grant No.XDB26000000)China Scholarship Council(Grant No.202004910207)State Key Laboratory of Palaeobiology and Stratigraphy。
文摘A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,Gudongkou and Honghuayuan sections)and Jiangnan regions(Nanba section)was created based on lithofacies and major element analysis.Three siliciclastic(LF1–3)and six carbonate(LF4–9)lithofacies are recognized representing sediments that were deposited in mixed siliciclastic and carbonate ramp environment.The intensity of mixed sedimentation and terrigenous input were evaluated using the elemental proxies Intensity of Mixed sedimentation(IM)and Aluminum Accumulation Rate(Al AR),as well as their mean values during certain time intervals.Mixed sediments are most well-developed along the marginal Yangtze region,strongly impacted by recurrent influx of westerly derived terrigenous materials in response to global eustatic changes and regional tectonic movements,shaping the gently southeast-dipping morphology.Regular terrigenous influx resulted in periods of enhanced primary productivity on the Yangtze Ramp as evidenced by matching biodiversity peaks in planktonic organisms,i.e.,chitinozoans and acritarchs.Brachiopods and other shelly fauna were also able to proliferate as new niches developed along the gently dipping ramp floor with substrate changes.The biodiversification patterns suggest that terrigenous influx controlled in part by regional tectonics played a more important role than previously thought in the development of Great Ordovician Biodiversification Event in South China.
基金Department of Science and Technology(DST) for funding the Projects on Dharwar Craton
文摘Abstract Greenstone belts of the eastern Dharwar Craton, India are reinterpreted as composite tecto- nostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new high-precision elemental data. The former are dominated by a komatiite plus Mg-tholeiitic basalt volcanic association, with deep water siliciclastic and banded iron formation (BIF) sedimentary rocks. Plumes melted at 〈90 km under thin rifted continental lithosphere to preserve intrao- ceanic and continental margin aspects. Associated alkaline basalts record subduction-recycling of Me- soarchean oceanic crust, incubated in the asthenosphere, and erupted coevally with Mg basalts from a heterogeneous mantle plume. Together, komatiites-Mg basalts-alkaline basalts plot along the Phanero- zoic mantle array in Th/Yb versus Nb/Yb coordinate space, representing zoned plumes, establishing that these reservoirs were present in the Neoarchean mantle. Convergent margin magmatic associations are dominated by tholeiitic to calc-alkaline basalts compo- sitionally similar to recent intraoceanic arcs. As well, boninitic flows sourced in extremely depleted mantle are present, and the association of arc basalts with Mg-andesites-Nb enriched basalts-adakites documented from Cenozoic arcs characterized by subduction of young (〈20 Ma), hot, oceanic litho- sphere. Consequently, Cenozoic style "hot" subduction was operating in the Neoarchean. These diverse volcanic associations were assembled to give composite terranes in a subduction-accretion orogen at -2.7 Ga, coevally with a global accretionary orogen at -2.7 Ga, and associated orogenic gold mineralization.
基金This paper is supported by the Natural Science and Engineering Re-search Council (NSERC) of Canada and the Cameco Corporation .
文摘Quartz grains in contact with uranium-bearing minerals or fluids are characterized by natural radiation-induced paramagnetic defects (e. g. , oxygen vacancy centers, silicon vacancy centers, and peroxy radicals), which are amenable to study by electron paramagnetic resonance (EPR) spectroscopy. These natural radiation-induced paramagnetic defects, except for the oxygen vacancy centers, in quartz are concentrated in narrow bands penetrated by α particles: (1) in halos around U- and Th-bearing mineral inclusions and (2) in outer rims or along fractures. The second type of occurrence provides information about uranium mineralization or remobilization (i. e. , sources of uranium, timing of mineralization or remobilization, pathways of uranium-bearing fluids). It can also be used to evaluate sedimentary basins for potential of uranium mineralization. In particular, the peroxy radicals are stable up to 800℃ and, therefore, are useful for evaluating metasedimentary rocks (e. g. , Paleoproterozoic metasedimentary sequences in the central zone of the North China craton). EPR study of the Changcheng Series can focus on quartz from the sediment-basement unconformity and faults to determine the presence and types of natural radiation-induced paramagnetic defects, with which to identify and prioritize uranium anomalies. Other potential applications of natural radiation-induced paramagnetic defects in quartz include uranium-bearing hydrocarbon deposits in sedimentary basins. For example, the Junggar, Ordos, and Tarim basins in northwestern China all contain important oil and natural gas fields and are well known for elevated uranium concentrations, including economic sandstone-hosted uranium deposits. Therefore, systematic studies on the distribution of natural radiation-induced paramagnetic defects in quartz from host sedimentary sequences are expected to provide information about the migration of oil and natural gas in those basins.
文摘There are six distinct classes of gold deposits, each represented by metallogenic provinces, having 100's to > 1 000 tonne gold production. The deposit classes are: (1) erogenic gold; (2) Carlin and Carlin-like gold deposits; (3) epithermal gold-silver deposits; (4) copper-gold porphyry deposits; (5) iron-oxide copper-gold deposits; and (6) gold-rich volcanic hosted massive sul-fide (VMS) to sedimentary exhalative (SEDEX) deposits. This classification is based on ore and alteration mineral assemblages; ore and alteration metal budgets; ore fluid pressure(s) and compositions; crustal depth or depth ranges of formation; relationship to structures and/or magmatic intrusions at a variety of scales; and relationship to the P-T-t evolution of the host terrane. These classes reflect distinct geodynamic settings. Orogenic gold deposits are generated at mid-crustal (4-16 km) levels proximal to terrane boundaries, in transpressional subduction-accretion complexes of Cordilleran style erogenic belts; other orogenic gold provinces form inboard by delamina-tion of mantle lithosphere, or plume impingement. Carlin and Carlin-like gold deposits develop at shallow crustal levels (< 4 km) in extensional convergent margin continental arcs or back arcs; some provinces may involve asthenosphere plume impingement on the base of the lithosphere. Epithermal gold and copper-gold porphyry deposits are sited at shallow crustal levels in continental margin or intraoceanic arcs. Iron oxide copper-gold deposits form at mid to shallow crustal levels; they are associated with extensional intracratonic anorogenic magmatism. Proterozoic examples are sited at the transition from thick refractory Archean mantle lithosphere to thinner Proterozoic mantle lithosphere. Gold-rich VMS deposits are hydrothermal accumulations on or near the sea-floor in continental or intraoceanic back arcs.The compressional tectonics of orogenic gold deposits is generated by terrane accretion; high heat flow stems from crustal thickening, delamination of overthickened mantle lithosphere inducing advection of hot asthenosphere, or asthenosphere plume impingement. Ore fluids advect at lithostatic pressures. The extensional settings of Carlin, epithermal, and copper-gold porphyry deposits result from slab rollback driven by negative buoyancy of the subducting plate, and associated induced convection in asthenosphere below the over-riding lithospheric plate. Extension thins the lithosphere, advecting asthenosphere heat, promotes advection of mantle lithosphere and crustal magmas to shallow crustal levels, and enhances hydraulic conductivity. Siting of some copper-gold porphyry deposits is controlled by arc parallel or orthogonal structures that in turn reflect deflections or windows in the slab. Ore fluids in Carlin and epithermal deposits were at near hydrostatic pressures, with unconstrained magmatic fluid input, whereas ore fluids generating porphyry copper-gold deposits were initially magmatic and lithostatic, evolving to hydrostatic pressures. Fertilization of previously depleted sub-arc mantle lithosphere by fluids or melts from the subducting plate, or incompatible element enriched asthenosphere plumes, is likely a factor in generation of these gold deposits. Iron oxide copper-gold deposits involve prior fertilization of Ar-chean mantle lithosphere by incompatible element enriched asthenospheric plume liquids, and subsequent intracontinental anorogenic magmatism driven by decompressional extension from far-field plate forces. Halogen rich mantle lithosphere and crustal magmas likely are the causative intrusions for the deposits, with a deep crustal proximal to shallow crustal distal association. Gold-rich VMS deposits develop in extensional geodynamic settings, where thinned lithosphere extension drives high heat flow and enhanced hydraulic conductivity, as for epithermal deposits. Ore fluids induced hydrostatic convection of modified seawater, with unconstrained magmatic input. Some gold-rich VMS deposits with an epithermal metal budget may be submarine counterparts of ter
基金This work was supported by the Ministry of Science and Technology of China (Grant No. G1999043211).
文摘As an effective tracer, nitrogen isotopes have been used to determine the source of ore materials in recent years. In this study, the nitrogen isotopes and contents were measured on K-feldspar and sericite of gold deposits and some related granitic intrusions in Jiaodong, Xiao-qinling-Xiong’ershan, west Qinling, the west part of North Qilian and the Zhangjiakou-Xuanhua district around the North China craton (NCC). Although the gold deposits around the NCC are hosted in Precambrian metamorphic rocks, Phanerozoic sedimentary rocks, mafic volcanic rocks or granite, comparison of which with the nitrogen contents and isotope data of previous studies on mantle-derived rocks, granites, metamorphic rocks and gold deposits indicates that those deposits are closely related to granitic rocks. In addition, mantle-derived materials may have been involved in the ore-forming processes to a certain degree. This conclusion is consistent with the result of previous hydrogen, oxygen and carbon isotopic studies of those gold deposits.
基金supported by the National Natural Science Foundation of China(Nos.41072044,41130315 and 41530319)
文摘The nature and evolution of the Proto-Tethys Ocean originated from the breakup of the supercontinent Rodinia remain controversial. Early Paleozoic magmatism and metamorphism can pro- vide important constraints on the closure of the Proto-Tethys Ocean. This paper reports on a set of geological, petrographical, geochronological, mineralogical and geochemical data for Early Paleozoic granite, gabbro, granulite and granitic leucosome in the northern Wulan terrane of the Quanji Massif. Zircon LA-ICP-MS U-Pb dating reveals two episodes of magmatism, with the emplacement of a gran- itic pluton at 476.7±2.8 Ma and a gabbroic dike at 423±2 Ma. Whole-rock geochemistry suggests an arc affinity for the magma of the granitic pluton but a post-collisional extension setting for the gabbroic dike. Zircon LA-ICP-MS U-Pb dating also shows that the peak granulite-facies metamorphism and anatexis occurred at --475 Ma, coeval with the formation of the granitic pluton in the Quanji Massif as well as the early lawsonite-bearing eclogites in the North Qaidam high-pressure and ultrahigh-pressure (HP-UHP) metamorphic belt to the south. The granulite-facies metamorphism with peak P-T condi- tions at 718-729 ℃ and 0.46-0.53 GPa is characterized by an anticlockwise P-T path. Our data provide compelling evidence for Early Paleozoic paired metamorphic belts with HP-UHP metamorphism in the North Qaidam to the south and low PIT metamorphism in the Quanji Massif as a continental arc to the north, hence suggesting a northward subduction polarity for the Proto-Tethys oceanic plate. The intrusion of the post-collisional gabbroic dike supports for the closure of the Proto-Tethys Ocean in north- western China before 423 Ma.
基金supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to K.S.(Nos.09041116and 13440151)a Grant-in-Aid for the Young Scientists from JSPS to T.H.Antarctic Research funding to GHG from the NRF,SouthAfrica,Grant ID.110739
文摘We carried out SHRIMP zircon U-Pb dating on A-type granitic intrusions from the Namaqua-Natal Province,South Africa,Sverdrupfjella,western Dronning Maud Land,Antarctica and the Nampula Province of northern Mozambique.Zircon grains in these granitic rocks are typically elongated and oscillatory zoned,suggesting magmatic origins.Zircons from the granitoid intrusions analyzed in this study suggest^1025-1100 Ma ages,which confirm widespread Mesoproterozoic A-type granitic magmatism in the Namaqua-Natal(South Africa),Maud(Antarctica)and Mozambique metamorphic terrains.No older inherited(e.g.,~2500 Ma Achean basement or^1200 Ma island are magmatism in northern Natal)zircon grains were seen.Four plutons from the Natal Belt(Mvoti Pluton,Glendale Pluton,Kwalembe Pluton,Ntimbankulu Pluton)display 1050-1040 Ma ages,whereas the Nthlimbitwa Pluton in northern Natal indicates older 1090-1080 Ma ages.A sample from Sverdrupfjella,Antarctica has^1091 Ma old zircons along with^530 Ma metamorphic rims.Similarly,four samples analysed from the Nampula Province of Mozambique suggest crystallization ages of^1060-1090 Ma but also show significant discordance with two samples showing younger^550 Ma overgrowths.None of the Natal samples show any younger overgrowths.A single sample from southwestern Namaqualand yielded an age of^1033 Ma.Currently available chronological data suggest magmatism took place in the Namaqua-Natal-MaudMozambique(NNMM)belt between^1025 Ma and^1100 Ma with two broad phases between^1060-1020 Ma and 1100-1070 Ma respectively,with peaks at between^1030-1040 Ma and^1070-1090 Ma.The age data from the granitic intrusions from Namaqualand.combined with those from Natal,Antarctica and Mozambique suggest a crude spatial-age relationship with the older>1070 Ma ages being largely restricted close to the eastern and western margins of the Kalahari Craton in northern Natal,Mozambique.Namaqualand and WDML Antarctica whereas the younger<1060 Ma ages dominate in southern Natal and western Namaqualand and are largely restricted to the southern and possibly the western margins of the Kalahari Craton.The older ages of magmatism partially overlap with or are marginally younger than the intracratonic Mkondo Large lgneous Provinee intruded into or extruded onto the Kalahari Craton,suggesting a tectonic relationship with the Maud Belt.Similar ages from granitic augen gneisses in Sri Lanka suggest a continuous belt stretching from Namaqualand to Sri Lanka in a reconstituted Gondwana,formed during the terminal stages of amalgamation of Rodinia and predating the East African Orogen.This contiguity contributes to defining the extent of Rodinia-age crustal blocks,subsequently fragmented by the dispersal of Rodinia and Gondwana.
文摘Oxyegen and carbon isotopic ratios in the Quatermary-Pliocene,Pleistocene and Eocene Benthonic foraminiferahave been investigated from a single core drilled inthe East
基金supported in part by the Iwate University President Fund(to A.R.)Global Innovation Fund,University of Saskatchewan(to I.P.,G.N.G.,and A.R.)+7 种基金supported by grants from the Natural Sciences and Engineering Research Council of Canada(G.N.G.,I.P.)the Saskatchewan Health Research Foundation(G.N.G.,I.P.)The University of Saskatchewan,and Canada Research Chairs(G.N.G.,I.P.)supported by the US Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no.DE-AC02-06CH11357supported by the US DOE,Office of Science,Office of Basic Energy Sciences under contract no.DE-AC02-76SF00515supported by the DOE Office of Biological and Environmental Researchby the National Institutes of Health(NIH)National Institute of General Medical Sciences(NIGMS)(including P41GM103393)。
文摘Arsenic contamination is a major environmental issue,as it may lead to serious health hazard.The reduced trivalent formof inorganic arsenic,arsenite,is in generalmore toxic to plants comparedwith the fully oxidized pentavalent arsenate.Theuptakeof arsenite inplants hasbeenshown tobemediatedthrough a large subfamily of plant aquaglyceroporins,nodulin 26-like intrinsic proteins(NIPs).However,the efflux mechanisms,as well as themechanismof arsenite-induced root growth inhibition,remain poorly understood.Usingmolecular physiology,synchrotron imaging,and root transport assay approaches,we show that the cellular transport of trivalent arsenicals inArabidopsis thalianais stronglymodulatedbyPINFORMED2(PIN2)auxin efflux transporter.Root transport assay using radioactive arsenite,X-ray fluorescence imaging(XFI)coupled with X-ray absorption spectroscopy(XAS),and inductively coupled plasma mass spectrometry analysis revealed that pin2 plants accumulate higher concentrations of arsenite in roots comparedwith the wild-type.At the cellular level,arsenite specifically targets intracellular sorting of PIN2 and thereby alters the cellular auxin homeostasis.Consistently,loss of PIN2 function results in arsenite hypersensitivity in roots.XFI coupled with XAS further revealed that loss of PIN2 function results in specific accumulation of arsenical species,but not the other metals such as iron,zinc,or calcium in the root tip.Collectively,these results suggest that PIN2 likely functions as an arsenite efflux transporter for the distribution of arsenical species in planta.
基金supported by the National Natural Science Foundation of China(51701180,51871201,and U1802254)supported by the Canada Research Chair program and a grant from Natural Sciences and Engineering Research Council of Canada。
文摘Carbonate melts at high pressure and temperature conditions are crucial to the deep carbon cycle and play critical roles in the dynamics and evolution of Earth’s mantle.Melting of carbon-bearing rocks,which generates carbonatitic and carbonated silicate melts in the mantle,has been suggested as the primary agents for the outgassing of carbon from Earth’s interior dictating the deep carbon cycle.