The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality perc...The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality percentageamong other Asian countries. The main reasons for RTAs are roadcracks and potholes. Understanding the need for an automated system forthe detection of cracks and potholes, this study proposes a decision supportsystem (DSS) for an autonomous road information system for smart citydevelopment with the use of deep learning. The proposed DSS works in layerswhere initially the image of roads is captured and coordinates attached to theimage with the help of global positioning system (GPS), communicated tothe decision layer to find about the cracks and potholes in the roads, andeventually, that information is passed to the road management informationsystem, which gives information to drivers and the maintenance department.For the decision layer, we projected a CNN-based model for pothole crackdetection (PCD). Aimed at training, a K-fold cross-validation strategy wasused where the value of K was set to 10. The training of PCD was completedwith a self-collected dataset consisting of 6000 images from Pakistani roads.The proposed PCD achieved 98% of precision, 97% recall, and accuracy whiletesting on unseen images. The results produced by our model are higher thanthe existing model in terms of performance and computational cost, whichproves its significance.展开更多
The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments,soil conditions and higher human consumption.It is cultivated in vast areas of Asian and Non...The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments,soil conditions and higher human consumption.It is cultivated in vast areas of Asian and Non-Asian countries,including Pakistan.The guava plant is vulnerable to diseases,specifically the leaves and fruit,which result in massive crop and profitability losses.The existing plant leaf disease detection techniques can detect only one disease from a leaf.However,a single leaf may contain symptoms of multiple diseases.This study has proposed a hybrid deep learning-based framework for the real-time detection of multiple diseases from a single guava leaf in several steps.Firstly,Guava Infected Patches Modified MobileNetV2 and U-Net(GIP-MU-NET)has been proposed to segment the infected guava patches.The proposed model consists of modified MobileNetv2 as an encoder,and the U-Net model’s up-sampling layers are used as a decoder part.Secondly,the Guava Leaf SegmentationModel(GLSM)is proposed to segment the healthy and infected leaves.In the final step,the Guava Multiple Leaf Diseases Detection(GMLDD)model based on the YOLOv5 model detects various diseases from a guava leaf.Two self-collected datasets(the Guava Patches Dataset and the Guava Leaf Diseases Dataset)are used for training and validation.The proposed method detected the various defects,including five distinct classes,i.e.,anthracnose,insect attack,nutrition deficiency,wilt,and healthy.On average,the GIP-MU-Net model achieved 92.41%accuracy,the GLSM gained 83.40%accuracy,whereas the proposed GMLDD technique achieved 73.3%precision,73.1%recall,71.0%mAP@0.5 and 50.3 mAP@0.5:0.95 scores for all the aforesaid classes.展开更多
Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.Whi...Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.While using deep learning architectures has helped improve classification accuracy,the resulting models often need to be more flexible and require a large dataset to train.For the sake of taxonomy,this research proposes a hybrid method for categorizing guava,potato,and java plumleaves.Two new approaches are used to formthe hybridmodel suggested here.The guava,potato,and java plum plant species have been successfully segmented using the first model built on the MobileNetV2-UNET architecture.As a second model,we use a Plant Species Detection Stacking Ensemble Deep Learning Model(PSD-SE-DLM)to identify potatoes,java plums,and guava.The proposed models were trained using data collected in Punjab,Pakistan,consisting of images of healthy and sick leaves from guava,java plum,and potatoes.These datasets are known as PLSD and PLSSD.Accuracy levels of 99.84%and 96.38%were achieved for the suggested PSD-SE-DLM and MobileNetV2-UNET models,respectively.展开更多
基金Hunan Provincial Science and Technology Innovation Leader Project,Grant/Award Number:2021RC4025National Natural ScienceFoundation of China,Grant/Award Number:51808209Hunan Provincial Innovation Foundation for Postgraduate,Grant/Award Number:QL20210106.
文摘The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality percentageamong other Asian countries. The main reasons for RTAs are roadcracks and potholes. Understanding the need for an automated system forthe detection of cracks and potholes, this study proposes a decision supportsystem (DSS) for an autonomous road information system for smart citydevelopment with the use of deep learning. The proposed DSS works in layerswhere initially the image of roads is captured and coordinates attached to theimage with the help of global positioning system (GPS), communicated tothe decision layer to find about the cracks and potholes in the roads, andeventually, that information is passed to the road management informationsystem, which gives information to drivers and the maintenance department.For the decision layer, we projected a CNN-based model for pothole crackdetection (PCD). Aimed at training, a K-fold cross-validation strategy wasused where the value of K was set to 10. The training of PCD was completedwith a self-collected dataset consisting of 6000 images from Pakistani roads.The proposed PCD achieved 98% of precision, 97% recall, and accuracy whiletesting on unseen images. The results produced by our model are higher thanthe existing model in terms of performance and computational cost, whichproves its significance.
基金financially supported by the Deanship of Scientific Research,Qassim University,Saudi Arabia for funding the publication of this project.
文摘The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments,soil conditions and higher human consumption.It is cultivated in vast areas of Asian and Non-Asian countries,including Pakistan.The guava plant is vulnerable to diseases,specifically the leaves and fruit,which result in massive crop and profitability losses.The existing plant leaf disease detection techniques can detect only one disease from a leaf.However,a single leaf may contain symptoms of multiple diseases.This study has proposed a hybrid deep learning-based framework for the real-time detection of multiple diseases from a single guava leaf in several steps.Firstly,Guava Infected Patches Modified MobileNetV2 and U-Net(GIP-MU-NET)has been proposed to segment the infected guava patches.The proposed model consists of modified MobileNetv2 as an encoder,and the U-Net model’s up-sampling layers are used as a decoder part.Secondly,the Guava Leaf SegmentationModel(GLSM)is proposed to segment the healthy and infected leaves.In the final step,the Guava Multiple Leaf Diseases Detection(GMLDD)model based on the YOLOv5 model detects various diseases from a guava leaf.Two self-collected datasets(the Guava Patches Dataset and the Guava Leaf Diseases Dataset)are used for training and validation.The proposed method detected the various defects,including five distinct classes,i.e.,anthracnose,insect attack,nutrition deficiency,wilt,and healthy.On average,the GIP-MU-Net model achieved 92.41%accuracy,the GLSM gained 83.40%accuracy,whereas the proposed GMLDD technique achieved 73.3%precision,73.1%recall,71.0%mAP@0.5 and 50.3 mAP@0.5:0.95 scores for all the aforesaid classes.
基金funding this work through the Research Group Program under the Grant Number:(R.G.P.2/382/44).
文摘Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.While using deep learning architectures has helped improve classification accuracy,the resulting models often need to be more flexible and require a large dataset to train.For the sake of taxonomy,this research proposes a hybrid method for categorizing guava,potato,and java plumleaves.Two new approaches are used to formthe hybridmodel suggested here.The guava,potato,and java plum plant species have been successfully segmented using the first model built on the MobileNetV2-UNET architecture.As a second model,we use a Plant Species Detection Stacking Ensemble Deep Learning Model(PSD-SE-DLM)to identify potatoes,java plums,and guava.The proposed models were trained using data collected in Punjab,Pakistan,consisting of images of healthy and sick leaves from guava,java plum,and potatoes.These datasets are known as PLSD and PLSSD.Accuracy levels of 99.84%and 96.38%were achieved for the suggested PSD-SE-DLM and MobileNetV2-UNET models,respectively.