期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deep Learning Method to Detect the Road Cracks and Potholes for Smart Cities 被引量:1
1
作者 Hong-Hu Chu Muhammad Rizwan Saeed +4 位作者 Javed Rashid Muhammad Tahir Mehmood Israr Ahmad Rao Sohail Iqbal Ghulam Ali 《Computers, Materials & Continua》 SCIE EI 2023年第4期1863-1881,共19页
The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality perc... The increasing global population at a rapid pace makes road trafficdense;managing such massive traffic is challenging. In developing countrieslike Pakistan, road traffic accidents (RTA) have the highest mortality percentageamong other Asian countries. The main reasons for RTAs are roadcracks and potholes. Understanding the need for an automated system forthe detection of cracks and potholes, this study proposes a decision supportsystem (DSS) for an autonomous road information system for smart citydevelopment with the use of deep learning. The proposed DSS works in layerswhere initially the image of roads is captured and coordinates attached to theimage with the help of global positioning system (GPS), communicated tothe decision layer to find about the cracks and potholes in the roads, andeventually, that information is passed to the road management informationsystem, which gives information to drivers and the maintenance department.For the decision layer, we projected a CNN-based model for pothole crackdetection (PCD). Aimed at training, a K-fold cross-validation strategy wasused where the value of K was set to 10. The training of PCD was completedwith a self-collected dataset consisting of 6000 images from Pakistani roads.The proposed PCD achieved 98% of precision, 97% recall, and accuracy whiletesting on unseen images. The results produced by our model are higher thanthe existing model in terms of performance and computational cost, whichproves its significance. 展开更多
关键词 Road cracks and potholes CNN smart cities pothole crack detection decision support system
下载PDF
Real-Time Multiple Guava Leaf Disease Detection from a Single Leaf Using Hybrid Deep Learning Technique 被引量:1
2
作者 Javed Rashid Imran Khan +3 位作者 Ghulam Ali Shafiq ur Rehman Fahad Alturise Tamim Alkhalifah 《Computers, Materials & Continua》 SCIE EI 2023年第1期1235-1257,共23页
The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments,soil conditions and higher human consumption.It is cultivated in vast areas of Asian and Non... The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments,soil conditions and higher human consumption.It is cultivated in vast areas of Asian and Non-Asian countries,including Pakistan.The guava plant is vulnerable to diseases,specifically the leaves and fruit,which result in massive crop and profitability losses.The existing plant leaf disease detection techniques can detect only one disease from a leaf.However,a single leaf may contain symptoms of multiple diseases.This study has proposed a hybrid deep learning-based framework for the real-time detection of multiple diseases from a single guava leaf in several steps.Firstly,Guava Infected Patches Modified MobileNetV2 and U-Net(GIP-MU-NET)has been proposed to segment the infected guava patches.The proposed model consists of modified MobileNetv2 as an encoder,and the U-Net model’s up-sampling layers are used as a decoder part.Secondly,the Guava Leaf SegmentationModel(GLSM)is proposed to segment the healthy and infected leaves.In the final step,the Guava Multiple Leaf Diseases Detection(GMLDD)model based on the YOLOv5 model detects various diseases from a guava leaf.Two self-collected datasets(the Guava Patches Dataset and the Guava Leaf Diseases Dataset)are used for training and validation.The proposed method detected the various defects,including five distinct classes,i.e.,anthracnose,insect attack,nutrition deficiency,wilt,and healthy.On average,the GIP-MU-Net model achieved 92.41%accuracy,the GLSM gained 83.40%accuracy,whereas the proposed GMLDD technique achieved 73.3%precision,73.1%recall,71.0%mAP@0.5 and 50.3 mAP@0.5:0.95 scores for all the aforesaid classes. 展开更多
关键词 Guava leaf diseases guava leaf segmentation guava patches segmentation multiple leaf diseases guava leaf diseases dataset
下载PDF
A Hybrid Deep Learning Approach to Classify the Plant Leaf Species
3
作者 Javed Rashid Imran Khan +3 位作者 Irshad Ahmed Abbasi Muhammad Rizwan Saeed Mubbashar Saddique Mohamed Abbas 《Computers, Materials & Continua》 SCIE EI 2023年第9期3897-3920,共24页
Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.Whi... Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.While using deep learning architectures has helped improve classification accuracy,the resulting models often need to be more flexible and require a large dataset to train.For the sake of taxonomy,this research proposes a hybrid method for categorizing guava,potato,and java plumleaves.Two new approaches are used to formthe hybridmodel suggested here.The guava,potato,and java plum plant species have been successfully segmented using the first model built on the MobileNetV2-UNET architecture.As a second model,we use a Plant Species Detection Stacking Ensemble Deep Learning Model(PSD-SE-DLM)to identify potatoes,java plums,and guava.The proposed models were trained using data collected in Punjab,Pakistan,consisting of images of healthy and sick leaves from guava,java plum,and potatoes.These datasets are known as PLSD and PLSSD.Accuracy levels of 99.84%and 96.38%were achieved for the suggested PSD-SE-DLM and MobileNetV2-UNET models,respectively. 展开更多
关键词 Plant leaf species stacking ensemble model GUAVA POTATO java plum MobileNetV2-UNET hybrid deep learning segmentation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部