A series of Fe-Y zeolite catalysts with different Fe loading were prepared by ferrocene sublimation under solvent and wa- ter-free conditions. The dispersion, structure and morphology of the iron species on the Fe-Y c...A series of Fe-Y zeolite catalysts with different Fe loading were prepared by ferrocene sublimation under solvent and wa- ter-free conditions. The dispersion, structure and morphology of the iron species on the Fe-Y catalysts were characterized by XRD, TEM and UV-Vis. The catalytic activities of Fe-Y samples were measured in selective catalytic redaction of NO with ammonia (NH3-SCR). The results showed that the iron species on the HY zeolite support were mainly made up of isolated Fe3+ ions, FexOy oligomers and a little amount of 〈 3 nm spherical Fe203 particles. Isolated Fe3+ ions are predominating among all the Fe-Y catalysts. The sum of isolated Fe3+ ions and FexOy oligomers took up more than 90% percent of total iron species on the Fe-Y till 10.0 wt% loading of Fe.展开更多
基金support of the National Natural Science Foundation of China(20903080)
文摘A series of Fe-Y zeolite catalysts with different Fe loading were prepared by ferrocene sublimation under solvent and wa- ter-free conditions. The dispersion, structure and morphology of the iron species on the Fe-Y catalysts were characterized by XRD, TEM and UV-Vis. The catalytic activities of Fe-Y samples were measured in selective catalytic redaction of NO with ammonia (NH3-SCR). The results showed that the iron species on the HY zeolite support were mainly made up of isolated Fe3+ ions, FexOy oligomers and a little amount of 〈 3 nm spherical Fe203 particles. Isolated Fe3+ ions are predominating among all the Fe-Y catalysts. The sum of isolated Fe3+ ions and FexOy oligomers took up more than 90% percent of total iron species on the Fe-Y till 10.0 wt% loading of Fe.