The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors.The main focus is on increasing the speed of establishing the relevance of ...The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors.The main focus is on increasing the speed of establishing the relevance of object and etalon descriptions while maintaining the required level of classification efficiency.The class to be recognized is represented by an infinite set of images obtained from the etalon by applying arbitrary geometric transformations.It is proposed to reduce the descriptions for the etalon database by selecting the most significant descriptor components according to the information content criterion.The informativeness of an etalon descriptor is estimated by the difference of the closest distances to its own and other descriptions.The developed method determines the relevance of the full description of the recognized object with the reduced description of the etalons.Several practical models of the classifier with different options for establishing the correspondence between object descriptors and etalons are considered.The results of the experimental modeling of the proposed methods for a database including images of museum jewelry are presented.The test sample is formed as a set of images from the etalon database and out of the database with the application of geometric transformations of scale and rotation in the field of view.The practical problems of determining the threshold for the number of votes,based on which a classification decision is made,have been researched.Modeling has revealed the practical possibility of tenfold reducing descriptions with full preservation of classification accuracy.Reducing the descriptions by twenty times in the experiment leads to slightly decreased accuracy.The speed of the analysis increases in proportion to the degree of reduction.The use of reduction by the informativeness criterion confirmed the possibility of obtaining the most significant subset of features for classification,which guarantees a decent level of accuracy.展开更多
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe...Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.展开更多
UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between...UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between objects such as oil spill and sea surface,Spartina alterniflora and algae is high,and the effect of the general segmentation algorithm is poor,which brings new challenges to the segmentation of UAV marine images.Panoramic segmentation can do object detection and semantic segmentation at the same time,which can well solve the polymorphism problem of objects in UAV ocean images.Currently,there are few studies on UAV marine image recognition with panoptic segmentation.In addition,there are no publicly available panoptic segmentation datasets for UAV images.In this work,we collect and annotate UAV images to form a panoptic segmentation UAV dataset named UAV-OUC-SEG and propose a panoptic segmentation method named PanopticUAV.First,to deal with the large intraclass variability in scale,deformable convolution and CBAM attention mechanism are employed in the backbone to obtain more accurate features.Second,due to the complexity and diversity of marine images,boundary masks by the Laplacian operator equation from the ground truth are merged into feature maps to improve boundary segmentation precision.Experiments demonstrate the advantages of PanopticUAV beyond the most other advanced approaches on the UAV-OUC-SEG dataset.展开更多
Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,becaus...Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.展开更多
The value of system assimilation is to improve working relationships between tutors and learners while increasing workflow efficiency among tertiary institutions with low operational costs. E-skills could be described...The value of system assimilation is to improve working relationships between tutors and learners while increasing workflow efficiency among tertiary institutions with low operational costs. E-skills could be described as electronic education development, to assist ICT professionals to reach their future career goals and aim to help users boost their ICT skills. In a society that is expanding, it is also a crucial issue to take into account. Researchers have turned their attention to this topic because of its significance and contribution to the empowerment of graduates in digital education. Many scholars have proposed many methods for integrating e-skills into society with impressive results, but the rising rate of graduate unemployment in South Africa is gradually becoming a big worry in our society. A model based on Activity Theory (AT) and e-skills will be developed in our tertiary institution to equip graduates with skills that will increase their employability and provide more individualized work opportunities as part of this study’s effort to solve this issue. With the use of the Statistical Package for the Social Sciences (SPSS) and Cronbach’s Alpha for validity and reliability testing, the study will create an experimental performance to assess the approach taken to measure e-skills in tertiary institutions to empower graduates in South Africa. The study established that system development and e-skilled models for tertiary institutions are growing gradually, especially in South African institutions, that empower graduates with profitable employability with experiences to improve work operation in the industries. In conclusion, system development and e-skills are very demanding but important to empower graduate employability to determine competency in the professional workforce.展开更多
Dietary imbalance and overeating can lead to an increasingly widespread disease-obesity.Aesthetic considerations aside,obesity is defined as an excess of adipose tissue that can lead to serious health problems and can...Dietary imbalance and overeating can lead to an increasingly widespread disease-obesity.Aesthetic considerations aside,obesity is defined as an excess of adipose tissue that can lead to serious health problems and can predispose to a number of pathological changes and clinical diseases,including diabetes;hypertension;atherosclerosis;coronary artery disease and stroke;obstructive sleep apnea;depression;weight-related arthropathies and endometrial and breast cancer.A body weight 20%above ideal for age,gender and height is a severe health risk.Bariatric surgery is a set of surgical methods to treat morbid obesity when other treatments such as diet,increased physical activity,behavioral changes and drugs have failed.The two most common procedures currently used are sleeve gastrectomy and gastric bypass.This procedure has gained popularity recently and is generally considered safe and effective.Although current data show that perioperative mortality is low and better control of comorbidities and short-term complications is achieved,more randomized trials are needed to evaluate the long-term outcomes of bariatric procedures.This review aims to synthesize and summarize the growing evidence on the long-term effectiveness,outcomes and complications of bariatric surgery.展开更多
Formation and deposition of amyloid-beta(Aβ) are considered one of the main drivers of Alzheimer's disease(AD). For more than 30 years, Aβ has challenged researchers through its complex physicochemical propertie...Formation and deposition of amyloid-beta(Aβ) are considered one of the main drivers of Alzheimer's disease(AD). For more than 30 years, Aβ has challenged researchers through its complex physicochemical properties and multiple peptide processing steps that involve several proteases(Andreasson et al., 2007).展开更多
The high costs incurred due to attacks and the increasing number of different devices in the Internet of Things(IoT)highlight the necessity of the early detection of botnets(i.e.,a network of infected devices)to gain ...The high costs incurred due to attacks and the increasing number of different devices in the Internet of Things(IoT)highlight the necessity of the early detection of botnets(i.e.,a network of infected devices)to gain an advantage against attacks.However,early botnet detection is challenging because of continuous malware mutations,the adoption of sophisticated obfuscation techniques,and the massive volume of data.The literature addresses botnet detection by modeling the behavior of malware spread,the classification of malicious traffic,and the analysis of traffic anomalies.This article details ANTE,a system for ANTicipating botnEt signals based on machine learning algorithms.The system adapts itself to different scenarios and detects different types of botnets.It autonomously selects the most appropriate Machine Learning(ML)pipeline for each botnet and improves the classification before an attack effectively begins.The system evaluation follows trace-driven experiments and compares ANTE results to other relevant results from the literature over four representative datasets:ISOT HTTP Botnet,CTU-13,CICDDoS2019,and BoT-IoT.Results show an average detection accuracy of 99.06%and an average bot detection precision of 100%.展开更多
Background:The management of suspected critical congenital heart defects(CCHD)relies on timely echocardiographic diagnosis.The availability of experienced echocardiographers is limited or even non-existent in many hos...Background:The management of suspected critical congenital heart defects(CCHD)relies on timely echocardiographic diagnosis.The availability of experienced echocardiographers is limited or even non-existent in many hospitals with obstetric units.This study evaluates remote-mentored echocardiography performed by physicians without experience in imaging of congenital heart defects(CHD).Methods:The setup included a pediatric cardiologist in a separate room,guiding a physician without experience in echocardiographic imaging of CHD in the examination of a symptomatic newborn.This remote-mentoring pair was blinded to the diagnosis of the newborn and presented with a simplified patient history.The echocardiographic images were streamed to the laptop of the mentor,along with a webcam feed showing the probe position.The task was to identify CCHD in need of immediate transfer to a pediatric cardiac surgical center.The result was compared to the previously completed echocardiographic report and the clinical decision of the patient-responsible pediatric cardiologist.Results:During 17 months,15 newborns were recruited.All six newborns with CCHD were correctly labeled by the remotementoring pair.One newborn with Tetralogy of Fallot was erroneously labeled as needing immediate transfer.Eight newborns without CCHD were correctly labeled.Conclusions:Remote-mentored echocardiography performed by examiners without experience in imaging CHD identified all newborns with CCHD in need of immediate transfer for specialist care.The setup shows promising results for improving the management of CCHD in hospitals without continuous pediatric cardiology service.展开更多
Time series analysis is a valuable tool in epidemiology that complements the classical epidemiological models in two different ways:Prediction and forecast.Prediction is related to explaining past and current data bas...Time series analysis is a valuable tool in epidemiology that complements the classical epidemiological models in two different ways:Prediction and forecast.Prediction is related to explaining past and current data based on various internal and external influences that may or may not have a causative role.Forecasting is an exploration of the possible future values based on the predictive ability of the model and hypothesized future values of the external and/or internal influences.The time series analysis approach has the advantage of being easier to use(in the cases of more straightforward and linear models such as Auto-Regressive Integrated Moving Average).Still,it is limited in forecasting time,unlike the classical models such as Susceptible-Exposed-Infectious-Removed.Its applicability in forecasting comes from its better accuracy for short-term prediction.In its basic form,it does not assume much theoretical knowledge of the mechanisms of spreading and mutating pathogens or the reaction of people and regulatory structures(governments,companies,etc.).Instead,it estimates from the data directly.Its predictive ability allows testing hypotheses for different factors that positively or negatively contribute to the pandemic spread;be it school closures,emerging variants,etc.It can be used in mortality or hospital risk estimation from new cases,seroprevalence studies,assessing properties of emerging variants,and estimating excess mortality and its relationship with a pandemic.展开更多
Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of ...Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of the body during internal or external bleeding. Access to clinical care for wounded military personnel injured on the battlefield is limited and has long delays compared to patients in peacetime. Most of the deaths of wounded military personnel on the battlefield occur within the first hour after being wounded. The most common causes are delay in providing medical care, loss of time for diagnosis, delay in stabilization of pain shock and large blood loss. Some help in overcoming these problems is provided by the data in the individual capsule, which each soldier of the modern army possesses;however, data in an individual capsule is not sufficient to provide emergency medical care in field and hospital conditions. This paper considers a project for development of a smart real-time monitoring wearable system for blood loss and level of shock stress in wounded persons on the battlefield, which provides medical staff in field and hospital conditions with the necessary information to give timely medical care. Although the hospital will require additional information, the basic information about the victims will already be known before he enters the hospital. It is important to emphasize that the key term in this approach is monitoring. It is tracking, and not a one-time measurement of indicators, that is crucial in a valid definition of bleeding.展开更多
BACKGROUND The coronavirus disease 2019(COVID-19)pandemic affects all aspects of our lives,including children.With the advancement of the pandemic,children under five years old are at increased risk of hospitalization...BACKGROUND The coronavirus disease 2019(COVID-19)pandemic affects all aspects of our lives,including children.With the advancement of the pandemic,children under five years old are at increased risk of hospitalization relative to other age groups.This makes it paramount that we develop tools to address the two critical aspects of preserving children's health–new treatment protocols and new predictive models.For those purposes,we need to understand better the effects of COVID-19 on children,and we need to be able to predict the number of affected children as a proportion of the number of infected children.This is why our research focuses on clinical and epidemiological pictures of children with heart damage post-COVID,as a part of the general picture of post-COVID among this age group.AIM To demonstrate the role of children in the COVID-19 spread in Bulgaria and to test the hypothesis that there are no secondary transmissions in schools and from children to adults.METHODS Our modeling and data show with high probability that in Bulgaria,with our current measures,vaccination strategy and contact structure,the pandemic is driven by the children and their contacts in school.RESULTS This makes it paramount that we develop tools to address the two critical aspects of preserving children's health–new treatment protocols and new predictive models.For those purposes,we need to understand better the effects of COVID-19 on children,and we need to be able to predict the number of affected children as a proportion of the number of infected children.This is why our research focuses on clinical and epidemiological pictures of children with heart damage post-COVID,as a part of the general picture of post-Covid among this age group.CONCLUSION Our modeling rejects that hypothesis,and the epidemiological data supports that.We used epidemiological data to support the validity of our modeling.The first summer wave in 2020 from the listed here school proms endorse the idea of transmissions from students to teachers.展开更多
Computer Algebra Systems have been extensively used in higher education. The reasons are many e.g., visualize mathematical problems, correlate real-world problems on a conceptual level, are flexible, simple to use, ac...Computer Algebra Systems have been extensively used in higher education. The reasons are many e.g., visualize mathematical problems, correlate real-world problems on a conceptual level, are flexible, simple to use, accessible from anywhere, etc. However, there is still room for improvement. Computer algebra system (CAS) optimization is the set of best practices and techniques to keep the CAS running optimally. Best practices are related to how to carry out a mathematical task or configure your system. In this paper, we are going to examine these techniques. The documentation sheets of CASs are the source of data that we used to compare them and examine their characteristics. The research results reveal that there are many tips that we can follow to accelerate performance.展开更多
Online Computer Algebra Systems (CAS) have become increasingly popular among students and teachers. The reasons are many such as being more flexible, simple to use, accessible from anywhere, etc. However, as with any ...Online Computer Algebra Systems (CAS) have become increasingly popular among students and teachers. The reasons are many such as being more flexible, simple to use, accessible from anywhere, etc. However, as with any educational tool, they also have some disadvantages that we should know. The purpose of this study is to analyze advantages and disadvantages of online CASs and propose some techniques to optimize CAS performance in order to reduce weaknesses. The research results reveal that online CAS versions are on the rise but lag in some capabilities in comparison with desktop versions.展开更多
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity....Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity.In this study,a Wireless Sensor Networks(“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning(DRL)technology in carrying out prediction tasks based on three classifications:“optimal,”“sub-optimal,”or“not-optimal”conditions based on three parameters including humidity,temperature,and soil moisture.The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.A value function-based will be employed to perform DRL model called deep Q-network(DQN)which contributes in optimizing the future reward and performing the precise decision recommendation to the agent and system behavior.The WSNs experiment result indicates the system’s accuracy by capturing the real-time environment parameters is 98.39%.Meanwhile,the results of comparative accuracy model experiments of the proposed DQN,individual Q-learning,uniform coverage(UC),and NaÏe Bayes classifier(NBC)are 97.60%,95.30%,96.50%,and 92.30%,respectively.From the results of the comparative experiment,it can be seen that the proposed DQN used in the study has themost optimal accuracy.Testing with 22 test scenarios for“optimal,”“sub-optimal,”and“not-optimal”conditions was carried out to ensure the system runs well in the real-world data.The accuracy percentage which is generated from the real-world data reaches 95.45%.Fromthe resultsof the cost analysis,the systemcanprovide a low-cost systemcomparedtothe conventional system.展开更多
Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whe...Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques.展开更多
We have developed a protein array system,named"Phospho-Totum",which reproduces the phosphorylation state of a sample on the array.The protein array contains 1471 proteins from 273 known signaling pathways.Ac...We have developed a protein array system,named"Phospho-Totum",which reproduces the phosphorylation state of a sample on the array.The protein array contains 1471 proteins from 273 known signaling pathways.According to the activation degrees of tyrosine kinases in the sample,the corresponding groups of substrate proteins on the array are phosphorylated under the same conditions.In addition to measuring the phosphorylation levels of the 1471 substrates,we have developed and performed the artificial intelligence-assisted tools to further characterize the phosphorylation state and estimate pathway activation,tyrosine kinase activation,and a list of kinase inhibitors that produce phosphorylation states similar to that of the sample.The Phospho-Totum system,which seamlessly links and interrogates the measurements and analyses,has the potential to not only elucidate pathophysiological mechanisms in diseases by reproducing the phosphorylation state of samples,but also be useful for drug discovery,particularly for screening targeted kinases for potential drug kinase inhibitors.展开更多
This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variatio...This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variations. The study modelled seasonal variabilities in the seasonal Standardized Precipitation Index (SPI) and Standardized Agricultural Drought Index (SADI). To necessitate comparison, SADI and SPI were Normalized (from −1 to 1) as they had different ranges and hence could not be compared. From the seasonal indices, the pigeon peas planting season (July to September) was singled out as the most important season to study agricultural droughts. The planting season analysis selected all years with severe conditions (2008, 2009, 2010, 2011, 2017 and 2022) for spatial analysis. Spatial analysis revealed that most areas in the upstream part of the Basin and Coastal region in the lowlands experienced severe to extreme agricultural droughts in highlighted drought years. The modelled agricultural drought results were validated using yield data from two stations in the Basin. The results show that the model performed well with a Pearson Coefficient of 0.87 and a Root Mean Square Error of 0.29. This proactive approach aims to ensure food security, especially in scenarios where the Basin anticipates significantly reduced precipitation affecting water available for agriculture, enabling policymakers, water resource managers and agricultural sector stakeholders to equitably allocate resources and mitigate the effects of droughts in the most affected areas to significantly reduce the socioeconomic drought that is amplified by agricultural drought in rainfed agriculture river basins.展开更多
We consider the inverse electromagnetic scattering problem of determining the shape of a perfectly conducting core inside a penetrable chiral body. We prove the well-posedness of the corresponding direct scattering pr...We consider the inverse electromagnetic scattering problem of determining the shape of a perfectly conducting core inside a penetrable chiral body. We prove the well-posedness of the corresponding direct scattering problem by the variational method. We focus on a uniqueness result for the inverse scattering problem that is under what conditions an obstacle can be identified by the knowledge of the electric far-field pattern corresponding to all time-harmonic incident planes waves with a fixed wave number. To this end, we establish a chiral mixed reciprocity relation that connects the electric far-field pattern of a spherical wave with the scattered field of a plane wave.展开更多
基金This research was funded by Prince Sattam bin Abdulaziz University(Project Number PSAU/2023/01/25387).
文摘The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors.The main focus is on increasing the speed of establishing the relevance of object and etalon descriptions while maintaining the required level of classification efficiency.The class to be recognized is represented by an infinite set of images obtained from the etalon by applying arbitrary geometric transformations.It is proposed to reduce the descriptions for the etalon database by selecting the most significant descriptor components according to the information content criterion.The informativeness of an etalon descriptor is estimated by the difference of the closest distances to its own and other descriptions.The developed method determines the relevance of the full description of the recognized object with the reduced description of the etalons.Several practical models of the classifier with different options for establishing the correspondence between object descriptors and etalons are considered.The results of the experimental modeling of the proposed methods for a database including images of museum jewelry are presented.The test sample is formed as a set of images from the etalon database and out of the database with the application of geometric transformations of scale and rotation in the field of view.The practical problems of determining the threshold for the number of votes,based on which a classification decision is made,have been researched.Modeling has revealed the practical possibility of tenfold reducing descriptions with full preservation of classification accuracy.Reducing the descriptions by twenty times in the experiment leads to slightly decreased accuracy.The speed of the analysis increases in proportion to the degree of reduction.The use of reduction by the informativeness criterion confirmed the possibility of obtaining the most significant subset of features for classification,which guarantees a decent level of accuracy.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A2C1A01011131)the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073164).
文摘Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.
基金This work was partially supported by the National Key Research and Development Program of China under Grant No.2018AAA0100400the Natural Science Foundation of Shandong Province under Grants Nos.ZR2020MF131 and ZR2021ZD19the Science and Technology Program of Qingdao under Grant No.21-1-4-ny-19-nsh.
文摘UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between objects such as oil spill and sea surface,Spartina alterniflora and algae is high,and the effect of the general segmentation algorithm is poor,which brings new challenges to the segmentation of UAV marine images.Panoramic segmentation can do object detection and semantic segmentation at the same time,which can well solve the polymorphism problem of objects in UAV ocean images.Currently,there are few studies on UAV marine image recognition with panoptic segmentation.In addition,there are no publicly available panoptic segmentation datasets for UAV images.In this work,we collect and annotate UAV images to form a panoptic segmentation UAV dataset named UAV-OUC-SEG and propose a panoptic segmentation method named PanopticUAV.First,to deal with the large intraclass variability in scale,deformable convolution and CBAM attention mechanism are employed in the backbone to obtain more accurate features.Second,due to the complexity and diversity of marine images,boundary masks by the Laplacian operator equation from the ground truth are merged into feature maps to improve boundary segmentation precision.Experiments demonstrate the advantages of PanopticUAV beyond the most other advanced approaches on the UAV-OUC-SEG dataset.
基金the Researchers Supporting Project Number(RSP2023R 102)King Saud University,Riyadh,Saudi Arabia.
文摘Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.
文摘The value of system assimilation is to improve working relationships between tutors and learners while increasing workflow efficiency among tertiary institutions with low operational costs. E-skills could be described as electronic education development, to assist ICT professionals to reach their future career goals and aim to help users boost their ICT skills. In a society that is expanding, it is also a crucial issue to take into account. Researchers have turned their attention to this topic because of its significance and contribution to the empowerment of graduates in digital education. Many scholars have proposed many methods for integrating e-skills into society with impressive results, but the rising rate of graduate unemployment in South Africa is gradually becoming a big worry in our society. A model based on Activity Theory (AT) and e-skills will be developed in our tertiary institution to equip graduates with skills that will increase their employability and provide more individualized work opportunities as part of this study’s effort to solve this issue. With the use of the Statistical Package for the Social Sciences (SPSS) and Cronbach’s Alpha for validity and reliability testing, the study will create an experimental performance to assess the approach taken to measure e-skills in tertiary institutions to empower graduates in South Africa. The study established that system development and e-skilled models for tertiary institutions are growing gradually, especially in South African institutions, that empower graduates with profitable employability with experiences to improve work operation in the industries. In conclusion, system development and e-skills are very demanding but important to empower graduate employability to determine competency in the professional workforce.
基金Supported by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No. BG-RRP-2.004-0008-C01。
文摘Dietary imbalance and overeating can lead to an increasingly widespread disease-obesity.Aesthetic considerations aside,obesity is defined as an excess of adipose tissue that can lead to serious health problems and can predispose to a number of pathological changes and clinical diseases,including diabetes;hypertension;atherosclerosis;coronary artery disease and stroke;obstructive sleep apnea;depression;weight-related arthropathies and endometrial and breast cancer.A body weight 20%above ideal for age,gender and height is a severe health risk.Bariatric surgery is a set of surgical methods to treat morbid obesity when other treatments such as diet,increased physical activity,behavioral changes and drugs have failed.The two most common procedures currently used are sleeve gastrectomy and gastric bypass.This procedure has gained popularity recently and is generally considered safe and effective.Although current data show that perioperative mortality is low and better control of comorbidities and short-term complications is achieved,more randomized trials are needed to evaluate the long-term outcomes of bariatric procedures.This review aims to synthesize and summarize the growing evidence on the long-term effectiveness,outcomes and complications of bariatric surgery.
基金Ministerium für Wissenschaft und Gesundheit (MWG),Rheinland Pfalz,Neurodeg X Forschungskolleg (to BB)。
文摘Formation and deposition of amyloid-beta(Aβ) are considered one of the main drivers of Alzheimer's disease(AD). For more than 30 years, Aβ has challenged researchers through its complex physicochemical properties and multiple peptide processing steps that involve several proteases(Andreasson et al., 2007).
基金This work was supported by National Council for Scientific and Technological Development(CNPq/Brazil)grants#309129/2017-6 and#432204/2018-0,by Sao Paulo Research Foundation(FAPESP)+2 种基金grant#2018/23098-0,by the Coordination for the Improvement of Higher Education Personnel CAPES/Brazilgrants#88887.501287/2020-00 and#88887.509309/2020–00by the National Teaching and Research Network(RNP)by the GT-Periscope project.
文摘The high costs incurred due to attacks and the increasing number of different devices in the Internet of Things(IoT)highlight the necessity of the early detection of botnets(i.e.,a network of infected devices)to gain an advantage against attacks.However,early botnet detection is challenging because of continuous malware mutations,the adoption of sophisticated obfuscation techniques,and the massive volume of data.The literature addresses botnet detection by modeling the behavior of malware spread,the classification of malicious traffic,and the analysis of traffic anomalies.This article details ANTE,a system for ANTicipating botnEt signals based on machine learning algorithms.The system adapts itself to different scenarios and detects different types of botnets.It autonomously selects the most appropriate Machine Learning(ML)pipeline for each botnet and improves the classification before an attack effectively begins.The system evaluation follows trace-driven experiments and compares ANTE results to other relevant results from the literature over four representative datasets:ISOT HTTP Botnet,CTU-13,CICDDoS2019,and BoT-IoT.Results show an average detection accuracy of 99.06%and an average bot detection precision of 100%.
基金This study was funded through a grant from the European Union's Project Horizon 2020 and 5G HEART,under Grant Agreement Number 857034[15]the Norwegian Association for Children with Congenital Heart Disease.
文摘Background:The management of suspected critical congenital heart defects(CCHD)relies on timely echocardiographic diagnosis.The availability of experienced echocardiographers is limited or even non-existent in many hospitals with obstetric units.This study evaluates remote-mentored echocardiography performed by physicians without experience in imaging of congenital heart defects(CHD).Methods:The setup included a pediatric cardiologist in a separate room,guiding a physician without experience in echocardiographic imaging of CHD in the examination of a symptomatic newborn.This remote-mentoring pair was blinded to the diagnosis of the newborn and presented with a simplified patient history.The echocardiographic images were streamed to the laptop of the mentor,along with a webcam feed showing the probe position.The task was to identify CCHD in need of immediate transfer to a pediatric cardiac surgical center.The result was compared to the previously completed echocardiographic report and the clinical decision of the patient-responsible pediatric cardiologist.Results:During 17 months,15 newborns were recruited.All six newborns with CCHD were correctly labeled by the remotementoring pair.One newborn with Tetralogy of Fallot was erroneously labeled as needing immediate transfer.Eight newborns without CCHD were correctly labeled.Conclusions:Remote-mentored echocardiography performed by examiners without experience in imaging CHD identified all newborns with CCHD in need of immediate transfer for specialist care.The setup shows promising results for improving the management of CCHD in hospitals without continuous pediatric cardiology service.
基金Supported by European Union-NextGenerationEU,Through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008-C01.
文摘Time series analysis is a valuable tool in epidemiology that complements the classical epidemiological models in two different ways:Prediction and forecast.Prediction is related to explaining past and current data based on various internal and external influences that may or may not have a causative role.Forecasting is an exploration of the possible future values based on the predictive ability of the model and hypothesized future values of the external and/or internal influences.The time series analysis approach has the advantage of being easier to use(in the cases of more straightforward and linear models such as Auto-Regressive Integrated Moving Average).Still,it is limited in forecasting time,unlike the classical models such as Susceptible-Exposed-Infectious-Removed.Its applicability in forecasting comes from its better accuracy for short-term prediction.In its basic form,it does not assume much theoretical knowledge of the mechanisms of spreading and mutating pathogens or the reaction of people and regulatory structures(governments,companies,etc.).Instead,it estimates from the data directly.Its predictive ability allows testing hypotheses for different factors that positively or negatively contribute to the pandemic spread;be it school closures,emerging variants,etc.It can be used in mortality or hospital risk estimation from new cases,seroprevalence studies,assessing properties of emerging variants,and estimating excess mortality and its relationship with a pandemic.
文摘Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of the body during internal or external bleeding. Access to clinical care for wounded military personnel injured on the battlefield is limited and has long delays compared to patients in peacetime. Most of the deaths of wounded military personnel on the battlefield occur within the first hour after being wounded. The most common causes are delay in providing medical care, loss of time for diagnosis, delay in stabilization of pain shock and large blood loss. Some help in overcoming these problems is provided by the data in the individual capsule, which each soldier of the modern army possesses;however, data in an individual capsule is not sufficient to provide emergency medical care in field and hospital conditions. This paper considers a project for development of a smart real-time monitoring wearable system for blood loss and level of shock stress in wounded persons on the battlefield, which provides medical staff in field and hospital conditions with the necessary information to give timely medical care. Although the hospital will require additional information, the basic information about the victims will already be known before he enters the hospital. It is important to emphasize that the key term in this approach is monitoring. It is tracking, and not a one-time measurement of indicators, that is crucial in a valid definition of bleeding.
文摘BACKGROUND The coronavirus disease 2019(COVID-19)pandemic affects all aspects of our lives,including children.With the advancement of the pandemic,children under five years old are at increased risk of hospitalization relative to other age groups.This makes it paramount that we develop tools to address the two critical aspects of preserving children's health–new treatment protocols and new predictive models.For those purposes,we need to understand better the effects of COVID-19 on children,and we need to be able to predict the number of affected children as a proportion of the number of infected children.This is why our research focuses on clinical and epidemiological pictures of children with heart damage post-COVID,as a part of the general picture of post-COVID among this age group.AIM To demonstrate the role of children in the COVID-19 spread in Bulgaria and to test the hypothesis that there are no secondary transmissions in schools and from children to adults.METHODS Our modeling and data show with high probability that in Bulgaria,with our current measures,vaccination strategy and contact structure,the pandemic is driven by the children and their contacts in school.RESULTS This makes it paramount that we develop tools to address the two critical aspects of preserving children's health–new treatment protocols and new predictive models.For those purposes,we need to understand better the effects of COVID-19 on children,and we need to be able to predict the number of affected children as a proportion of the number of infected children.This is why our research focuses on clinical and epidemiological pictures of children with heart damage post-COVID,as a part of the general picture of post-Covid among this age group.CONCLUSION Our modeling rejects that hypothesis,and the epidemiological data supports that.We used epidemiological data to support the validity of our modeling.The first summer wave in 2020 from the listed here school proms endorse the idea of transmissions from students to teachers.
文摘Computer Algebra Systems have been extensively used in higher education. The reasons are many e.g., visualize mathematical problems, correlate real-world problems on a conceptual level, are flexible, simple to use, accessible from anywhere, etc. However, there is still room for improvement. Computer algebra system (CAS) optimization is the set of best practices and techniques to keep the CAS running optimally. Best practices are related to how to carry out a mathematical task or configure your system. In this paper, we are going to examine these techniques. The documentation sheets of CASs are the source of data that we used to compare them and examine their characteristics. The research results reveal that there are many tips that we can follow to accelerate performance.
文摘Online Computer Algebra Systems (CAS) have become increasingly popular among students and teachers. The reasons are many such as being more flexible, simple to use, accessible from anywhere, etc. However, as with any educational tool, they also have some disadvantages that we should know. The purpose of this study is to analyze advantages and disadvantages of online CASs and propose some techniques to optimize CAS performance in order to reduce weaknesses. The research results reveal that online CAS versions are on the rise but lag in some capabilities in comparison with desktop versions.
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
基金supported by the Department of Electrical Engineering at the National Chin-Yi University of Technology。
文摘Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity.In this study,a Wireless Sensor Networks(“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning(DRL)technology in carrying out prediction tasks based on three classifications:“optimal,”“sub-optimal,”or“not-optimal”conditions based on three parameters including humidity,temperature,and soil moisture.The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.A value function-based will be employed to perform DRL model called deep Q-network(DQN)which contributes in optimizing the future reward and performing the precise decision recommendation to the agent and system behavior.The WSNs experiment result indicates the system’s accuracy by capturing the real-time environment parameters is 98.39%.Meanwhile,the results of comparative accuracy model experiments of the proposed DQN,individual Q-learning,uniform coverage(UC),and NaÏe Bayes classifier(NBC)are 97.60%,95.30%,96.50%,and 92.30%,respectively.From the results of the comparative experiment,it can be seen that the proposed DQN used in the study has themost optimal accuracy.Testing with 22 test scenarios for“optimal,”“sub-optimal,”and“not-optimal”conditions was carried out to ensure the system runs well in the real-world data.The accuracy percentage which is generated from the real-world data reaches 95.45%.Fromthe resultsof the cost analysis,the systemcanprovide a low-cost systemcomparedtothe conventional system.
文摘Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.82230114 to F.H.)the National Key Research and Development Program of China(Grant No.2022YFE0104800 to F.H.).
文摘We have developed a protein array system,named"Phospho-Totum",which reproduces the phosphorylation state of a sample on the array.The protein array contains 1471 proteins from 273 known signaling pathways.According to the activation degrees of tyrosine kinases in the sample,the corresponding groups of substrate proteins on the array are phosphorylated under the same conditions.In addition to measuring the phosphorylation levels of the 1471 substrates,we have developed and performed the artificial intelligence-assisted tools to further characterize the phosphorylation state and estimate pathway activation,tyrosine kinase activation,and a list of kinase inhibitors that produce phosphorylation states similar to that of the sample.The Phospho-Totum system,which seamlessly links and interrogates the measurements and analyses,has the potential to not only elucidate pathophysiological mechanisms in diseases by reproducing the phosphorylation state of samples,but also be useful for drug discovery,particularly for screening targeted kinases for potential drug kinase inhibitors.
文摘This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variations. The study modelled seasonal variabilities in the seasonal Standardized Precipitation Index (SPI) and Standardized Agricultural Drought Index (SADI). To necessitate comparison, SADI and SPI were Normalized (from −1 to 1) as they had different ranges and hence could not be compared. From the seasonal indices, the pigeon peas planting season (July to September) was singled out as the most important season to study agricultural droughts. The planting season analysis selected all years with severe conditions (2008, 2009, 2010, 2011, 2017 and 2022) for spatial analysis. Spatial analysis revealed that most areas in the upstream part of the Basin and Coastal region in the lowlands experienced severe to extreme agricultural droughts in highlighted drought years. The modelled agricultural drought results were validated using yield data from two stations in the Basin. The results show that the model performed well with a Pearson Coefficient of 0.87 and a Root Mean Square Error of 0.29. This proactive approach aims to ensure food security, especially in scenarios where the Basin anticipates significantly reduced precipitation affecting water available for agriculture, enabling policymakers, water resource managers and agricultural sector stakeholders to equitably allocate resources and mitigate the effects of droughts in the most affected areas to significantly reduce the socioeconomic drought that is amplified by agricultural drought in rainfed agriculture river basins.
文摘We consider the inverse electromagnetic scattering problem of determining the shape of a perfectly conducting core inside a penetrable chiral body. We prove the well-posedness of the corresponding direct scattering problem by the variational method. We focus on a uniqueness result for the inverse scattering problem that is under what conditions an obstacle can be identified by the knowledge of the electric far-field pattern corresponding to all time-harmonic incident planes waves with a fixed wave number. To this end, we establish a chiral mixed reciprocity relation that connects the electric far-field pattern of a spherical wave with the scattered field of a plane wave.