The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential pr...The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.展开更多
Recently, the inverse connected p-median problem on block graphs G(V,E,w) under various cost functions, say rectilinear norm, Chebyshev norm, and bottleneck Hamming distance. Their contributions include finding a nece...Recently, the inverse connected p-median problem on block graphs G(V,E,w) under various cost functions, say rectilinear norm, Chebyshev norm, and bottleneck Hamming distance. Their contributions include finding a necessary and sufficient condition for the connected p-median problem on block graphs, developing algorithms and showing that these problems can be solved in O(n log n) time, where n is the number of vertices in the underlying block graph. Using similar technique, we show that some results are incorrect by a counter-example. Then we redefine some notations, reprove Theorem 1 and redescribe Theorem 2, Theorem 3 and Theorem 4.展开更多
In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in ...In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.展开更多
A k-tree is a tree with maximum degree at most k. In this paper, we give a sharp degree sum condition for a graph to have a spanning k-tree in which specified vertices have degree less than t, where 1≤t≤k.We denote ...A k-tree is a tree with maximum degree at most k. In this paper, we give a sharp degree sum condition for a graph to have a spanning k-tree in which specified vertices have degree less than t, where 1≤t≤k.We denote by σ_k(G) the minimum value of the degree sum of k independent vertices in a graph G. Let k≥2,s≥0 and 1≤t≤k be integers, and suppose G is an(s + 1)-connected graph with σ_k(G)≥|G|+(k-t)s-1.Then for any s specified vertices, G contains a spanning k-tree in which every specified vertex has degree at most t. This improves a result obtained by Matsuda and Matsumura.展开更多
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10472091 and 10332030).
文摘The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.
文摘Recently, the inverse connected p-median problem on block graphs G(V,E,w) under various cost functions, say rectilinear norm, Chebyshev norm, and bottleneck Hamming distance. Their contributions include finding a necessary and sufficient condition for the connected p-median problem on block graphs, developing algorithms and showing that these problems can be solved in O(n log n) time, where n is the number of vertices in the underlying block graph. Using similar technique, we show that some results are incorrect by a counter-example. Then we redefine some notations, reprove Theorem 1 and redescribe Theorem 2, Theorem 3 and Theorem 4.
基金This project was supported by the National Natural Science Foundation of China (60274007) NSERC-Canada.
文摘In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.
基金Partially supported by National Natural Science Foundation of China(No.11771172)key scientific and technological project of higher education of Henan Province(No.19A110019)+1 种基金Science and technology innovation fund of Henan Agricultural University(No.KJCX2019A15)Partially supported by the Ph D Research Foundation of Henan Agricultural University(No.30500614)
文摘A k-tree is a tree with maximum degree at most k. In this paper, we give a sharp degree sum condition for a graph to have a spanning k-tree in which specified vertices have degree less than t, where 1≤t≤k.We denote by σ_k(G) the minimum value of the degree sum of k independent vertices in a graph G. Let k≥2,s≥0 and 1≤t≤k be integers, and suppose G is an(s + 1)-connected graph with σ_k(G)≥|G|+(k-t)s-1.Then for any s specified vertices, G contains a spanning k-tree in which every specified vertex has degree at most t. This improves a result obtained by Matsuda and Matsumura.