期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Notch signaling:Its essential roles in bone and craniofacial development 被引量:4
1
作者 Mikhail Pakvasa Pranav Haravu +31 位作者 Michael Boachie-Mensah Alonzo Jones Elam Coalson Junyi Liao Zongyue Zeng Di Wu Kevin Qin Xiaoxing Wu Huaxiu Luo Jing Zhang Meng Zhang Fang He Yukun Mao Yongtao Zhang Changchun Niu Meng Wu Xia Zhao Hao Wang Linjuan Huang Deyao Shi Qing Liu Na Ni Kai Fu Michael J.Lee Jennifer Moriatis Wolf Aravind Athiviraham Sherwin S.Ho Tong-Chuan He Kelly Hynes Jason Strelzow Mostafa El Dafrawy Russell R.Reid 《Genes & Diseases》 SCIE 2021年第1期8-24,共17页
Notch is a cellecell signaling pathway that is involved in a host of activities including development,oncogenesis,skeletal homeostasis,and much more.More specifically,recent research has demonstrated the importance of... Notch is a cellecell signaling pathway that is involved in a host of activities including development,oncogenesis,skeletal homeostasis,and much more.More specifically,recent research has demonstrated the importance of Notch signaling in osteogenic differentiation,bone healing,and in the development of the skeleton.The craniofacial skeleton is complex and understanding its development has remained an important focus in biology.In this review we briefly summarize what recent research has revealed about Notch signaling and the current understanding of how the skeleton,skull,and face develop.We then discuss the crucial role that Notch plays in both craniofacial development and the skeletal system,and what importance it may play in the future. 展开更多
关键词 Alagille syndrome BONE Craniofacial development CRANIOSYNOSTOSIS NOTCH ONCOGENESIS OSTEOGENESIS Spondylocostal dysosotosis
原文传递
Development of a simplified and inexpensive RNA depletion method for plasmid DNA purification using size selection magnetic beads(SSMBs)
2
作者 Xi Wang Ling Zhao +24 位作者 Xiaoxing Wu Huaxiu Luo Di Wu Meng Zhan Jing Zhang Mikhail Pakvasa William Wagstaff Fang He Yukun Mao Yongtao Zhang Changchun Niu Meng Wu Xia Zhao Hao Wang Linjuan Huang Deyao Shi Qing Liu Na Ni Kai Fu Kelly Hynes Jason Strelzow Mostafa El Dafrawy Tong-Chuan He Hongbo Qi Zongyue Zeng 《Genes & Diseases》 SCIE 2021年第3期298-306,共9页
Plasmid DNA(pDNA)isolation from bacterial cells is one of the most common and critical steps in molecular cloning and biomedical research.Almost all pDNA purification in-volves disruption of bacteria,removal of membra... Plasmid DNA(pDNA)isolation from bacterial cells is one of the most common and critical steps in molecular cloning and biomedical research.Almost all pDNA purification in-volves disruption of bacteria,removal of membrane lipids,proteins and genomic DNA,purifi-cation of pDNA from bulk lysate,and concentration of pDNA for downstream applications.While many liquid-phase and solid-phase pDNA purification methods are used,the final pDNA preparations are usually contaminated with varied degrees of host RNA,which cannot be completely digested by RNase A.To develop a simple,cost-effective,and yet effective method for RNA depletion,we investigated whether commercially available size selection magnetic beads(SSMBs),such as Mag-Bind®TotalPure NGS Kit(or Mag-Bind),can completely deplete bacterial RNA in pDNA preparations.In this proof-of-principle study,we demonstrated that,compared with RNase A digestion and two commercial plasmid affinity purification kits,the SSMB method was highly efficient in depleting contaminating RNA from pDNA minipreps.Gene transfection and bacterial colony formation assays revealed that pDNA purified from SSMB method had superior quality and integrity to pDNA samples cleaned up by RNase A digestion and/or commercial plasmid purification kits.We further demonstrated that the SSMB method completely depleted contaminating RNA in large-scale pDNA samples.Furthermore,the Mag-bind-based SSMB method costs only 5-10%of most commercial plasmid purification kits on a per sample basis.Thus,the reported SSMB method can be a valuable and inexpensive tool for the removal of bacterial RNA for routine pDNA preparations. 展开更多
关键词 DNA transfection DNA vaccination Gene delivery Plasmid DNA purification RNA depletion Size selection magnetic beads
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部