AIM:To observe the effects of sargentgloryvine stem extracts (SSE) on the hepatoma cell line HepG-2 in vitro andin vivo and determine its mechanisms of action.METHODS:Cultured HepG-2 cells treated with SSE were analys...AIM:To observe the effects of sargentgloryvine stem extracts (SSE) on the hepatoma cell line HepG-2 in vitro andin vivo and determine its mechanisms of action.METHODS:Cultured HepG-2 cells treated with SSE were analysed by 3-(4,5-Dimethyl-thiazol-2-yl)-2,5Diphenyltetrazolium bromide and clone formation assay.The cell cycle and apoptosis analysis were conducted by flow cytometric,TdT-Mediated dUTP Nick End Labeling and acridine orange/ethidium bromide staining methods,and protein expression was examined by both reverse transcriptase-polymerase chain reaction and Western blotting.The pathological changes of the tumor cells were observed by haematoxylin and eosin staining.Tumor growth inhibition and side effects were determined in a xenograft mouse model.RESULTS:SSE treatment could not only inhibit HepG-2 cell proliferation in a doseand time-dependent manner but also induce apoptosis and cell cycle arrest at the S phase.The number of colonies formed by SSEtreated tumor cells was fewer than that of the controls (P<0.05).SSE induced caspase-dependent apoptosis accompanied by a significant decrease in Bcl-xl and Mcl-1 and elevation of Bak expression (P<0.05).Tumor necrosis factor α in the xenograft tumor tissue and the liver functions of SSE-treated mice showed no significant changes at week 8 compared with the control group (P>0.05).Systemic administration of SSE could inhibit the HepG-2 xenograft tumor growth with no obvious toxic side effects on normal tissues.CONCLUSION:SSE can induce apoptosis of HepG-2 cells in vitro and in vivo through decreasing expression of Bcl-xl and Mcl-1 and increasing expression of Bax.展开更多
AIM: To test the hypothesis that the variant UDP- glucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6- phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in...AIM: To test the hypothesis that the variant UDP- glucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6- phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis. METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups, respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency. RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6 TAA/A(TA)TTAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, Z2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0±6.5 and 12.7±2.9 μmol/L, respectively; P〈0.001, Student's ttest).CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese. 2005 The WJG Press and Elsevier Inc. All rights reserved展开更多
基金Supported by National Science and Technology Key Project for the Development of New Drugs in China,No. 2009ZX09103-422
文摘AIM:To observe the effects of sargentgloryvine stem extracts (SSE) on the hepatoma cell line HepG-2 in vitro andin vivo and determine its mechanisms of action.METHODS:Cultured HepG-2 cells treated with SSE were analysed by 3-(4,5-Dimethyl-thiazol-2-yl)-2,5Diphenyltetrazolium bromide and clone formation assay.The cell cycle and apoptosis analysis were conducted by flow cytometric,TdT-Mediated dUTP Nick End Labeling and acridine orange/ethidium bromide staining methods,and protein expression was examined by both reverse transcriptase-polymerase chain reaction and Western blotting.The pathological changes of the tumor cells were observed by haematoxylin and eosin staining.Tumor growth inhibition and side effects were determined in a xenograft mouse model.RESULTS:SSE treatment could not only inhibit HepG-2 cell proliferation in a doseand time-dependent manner but also induce apoptosis and cell cycle arrest at the S phase.The number of colonies formed by SSEtreated tumor cells was fewer than that of the controls (P<0.05).SSE induced caspase-dependent apoptosis accompanied by a significant decrease in Bcl-xl and Mcl-1 and elevation of Bak expression (P<0.05).Tumor necrosis factor α in the xenograft tumor tissue and the liver functions of SSE-treated mice showed no significant changes at week 8 compared with the control group (P>0.05).Systemic administration of SSE could inhibit the HepG-2 xenograft tumor growth with no obvious toxic side effects on normal tissues.CONCLUSION:SSE can induce apoptosis of HepG-2 cells in vitro and in vivo through decreasing expression of Bcl-xl and Mcl-1 and increasing expression of Bax.
基金Supported by a grant from the Cathay Medical Research Center, Taipei, Taiwan, China
文摘AIM: To test the hypothesis that the variant UDP- glucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6- phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis. METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups, respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency. RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6 TAA/A(TA)TTAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, Z2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0±6.5 and 12.7±2.9 μmol/L, respectively; P〈0.001, Student's ttest).CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese. 2005 The WJG Press and Elsevier Inc. All rights reserved