In recent years, owing to global warming and the rising sea levels, beach nourishment and groin building have been increasingly employed to protect coastal land from shoreline erosion. These actions may degrade beach ...In recent years, owing to global warming and the rising sea levels, beach nourishment and groin building have been increasingly employed to protect coastal land from shoreline erosion. These actions may degrade beach habitats and reduce biomass and invertebrate density at sites where they were employed. We conducted an eco-environmental evaluation at the Anping artificial beach-nourishment project area. At this site, sand piles within a semi-enclosed spur groin have been enforced by use of eco-engineering concepts since 2003. Four sampling sites were monitored during the study period from July 2002 to September 2008. The environmental impact assessment and biological investigations that we conducted are presented here. The results from this study indicate that both biotic (number of species, number of individual organisms, and Shannon-Wiener diversity) and abiotic parameters (suspended solids, biological oxygen demand, chemical oxygen demand, dissolved inorganic nitrogen, dissolved inorganic phosphorus, total phosphorus, total organic carbon, median diameter, and water content) showed significant differences before and after beach engineering construction. Biological conditions became worse in the beginning stages of the engineering but improved after the restoration work completion. This study reveals that the composition of benthic invertebrates changed over the study period, and two groups of organisms, Bivalvia and Gastropoda, seemed to be particularly suitable to this habitat after the semi-enclosed artificial structures completion.展开更多
In this paper, three approachs were developed to find indicator species from the habitat created by coastal structures. These approachs consist of a model of species co-occurrence probability, a model of k-environment...In this paper, three approachs were developed to find indicator species from the habitat created by coastal structures. These approachs consist of a model of species co-occurrence probability, a model of k-environmental factor probability and a composite model. Simultaneously, a case study was conducted in Hsinchu Fishing Port of north-western Taiwan. Based on the aforementioned models, three primary producer species, Ahnfeltiopsis flabelliformis, Chondrus ocellatus and Sarcodia montagneana, were chosen as the indicator species which had the highest co-occurrence probabilities and showed greater tolerance to more critical environment. It is imperative to understand how the three species under particular co-occurring conditions and environmental factors influence the composition of sessile assemblages in coastal water. The results indicate that for the purpose of increasing biodiversity, these models are feasible to find indicator species of artificial structures, and to help make it possible to design coastal structures based on biological considerations. This study provides an innovative approach for further advanced application in the artificial habitat of coast management.展开更多
基金supported by the Science Council under Grant Nos. NSC96-2221-E-009-241-MY3 and NSC 96-2221-E- 216-051
文摘In recent years, owing to global warming and the rising sea levels, beach nourishment and groin building have been increasingly employed to protect coastal land from shoreline erosion. These actions may degrade beach habitats and reduce biomass and invertebrate density at sites where they were employed. We conducted an eco-environmental evaluation at the Anping artificial beach-nourishment project area. At this site, sand piles within a semi-enclosed spur groin have been enforced by use of eco-engineering concepts since 2003. Four sampling sites were monitored during the study period from July 2002 to September 2008. The environmental impact assessment and biological investigations that we conducted are presented here. The results from this study indicate that both biotic (number of species, number of individual organisms, and Shannon-Wiener diversity) and abiotic parameters (suspended solids, biological oxygen demand, chemical oxygen demand, dissolved inorganic nitrogen, dissolved inorganic phosphorus, total phosphorus, total organic carbon, median diameter, and water content) showed significant differences before and after beach engineering construction. Biological conditions became worse in the beginning stages of the engineering but improved after the restoration work completion. This study reveals that the composition of benthic invertebrates changed over the study period, and two groups of organisms, Bivalvia and Gastropoda, seemed to be particularly suitable to this habitat after the semi-enclosed artificial structures completion.
基金supported by the Science Council under grant number NSC94-2611-E-009-003
文摘In this paper, three approachs were developed to find indicator species from the habitat created by coastal structures. These approachs consist of a model of species co-occurrence probability, a model of k-environmental factor probability and a composite model. Simultaneously, a case study was conducted in Hsinchu Fishing Port of north-western Taiwan. Based on the aforementioned models, three primary producer species, Ahnfeltiopsis flabelliformis, Chondrus ocellatus and Sarcodia montagneana, were chosen as the indicator species which had the highest co-occurrence probabilities and showed greater tolerance to more critical environment. It is imperative to understand how the three species under particular co-occurring conditions and environmental factors influence the composition of sessile assemblages in coastal water. The results indicate that for the purpose of increasing biodiversity, these models are feasible to find indicator species of artificial structures, and to help make it possible to design coastal structures based on biological considerations. This study provides an innovative approach for further advanced application in the artificial habitat of coast management.