期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
The Spatiotemporal Distribution Characteristics of Cloud Types and Phases in the Arctic Based on CloudSat and CALIPSO Cloud Classification Products
1
作者 Yue SUN Huiling YANG +5 位作者 Hui XIAO Liang FENG Wei CHENG Libo ZHOU Weixi SHU Jingzhe SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期310-324,共15页
The cloud type product 2B-CLDCLASS-LIDAR based on CloudSat and CALIPSO from June 2006 to May 2017 is used to examine the temporal and spatial distribution characteristics and interannual variability of eight cloud typ... The cloud type product 2B-CLDCLASS-LIDAR based on CloudSat and CALIPSO from June 2006 to May 2017 is used to examine the temporal and spatial distribution characteristics and interannual variability of eight cloud types(high cloud, altostratus, altocumulus, stratus, stratocumulus, cumulus, nimbostratus, and deep convection) and three phases(ice,mixed, and water) in the Arctic. Possible reasons for the observed interannual variability are also discussed. The main conclusions are as follows:(1) More water clouds occur on the Atlantic side, and more ice clouds occur over continents.(2)The average spatial and seasonal distributions of cloud types show three patterns: high clouds and most cumuliform clouds are concentrated in low-latitude locations and peak in summer;altostratus and nimbostratus are concentrated over and around continents and are less abundant in summer;stratocumulus and stratus are concentrated near the inner Arctic and peak during spring and autumn.(3) Regional averaged interannual frequencies of ice clouds and altostratus clouds significantly decrease, while those of water clouds, altocumulus, and cumulus clouds increase significantly.(4) Significant features of the linear trends of cloud frequencies are mainly located over ocean areas.(5) The monthly water cloud frequency anomalies are positively correlated with air temperature in most of the troposphere, while those for ice clouds are negatively correlated.(6) The decrease in altostratus clouds is associated with the weakening of the Arctic front due to Arctic warming, while increased water vapor transport into the Arctic and higher atmospheric instability lead to more cumulus and altocumulus clouds. 展开更多
关键词 CloudSat and CALIPSO cloud type cloud phase temporal and spatial distribution interannual variation
下载PDF
A progress review of black carbon deposition on Arctic snow and ice and its impact on climate change
2
作者 ZHANG Zilu ZHOU Libo ZHANG Meigen 《Advances in Polar Science》 CSCD 2024年第2期178-191,共14页
The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant... The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice. 展开更多
关键词 Arctic climate black carbon ALBEDO SNOW DEPOSITION
下载PDF
Evaluation of Reanalysis Products with in situ GPS Sounding Observations in the Eastern Himalayas 被引量:2
3
作者 ZHU Jin-Huan MA Shu-Po +2 位作者 ZOU Han ZHOU Li-Bo LI Peng 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第1期17-22,共6页
Previous studies have shown that reanalysis products contain large uncertainties in the Tibetan Plateau(TP),and the biases are location dependent.Therefore,these products must be evaluated with in situ observations pr... Previous studies have shown that reanalysis products contain large uncertainties in the Tibetan Plateau(TP),and the biases are location dependent.Therefore,these products must be evaluated with in situ observations prior to their applications.In this study,the authors compare the results of several reanalysis projects with independent sounding observations recorded in the Yarlung Tsangpo River valley in the Eastern Himalayas in June 2010.These reanalysis projects include Climate Forecast System Reanalysis(CFSR),Interim European Centre for Medium Range Weather Forecasts Reanalysis(ERA- Interim),Japanese 25-year Reanalysis(JRA-25),Modern Era Retrospective Analysis for Research and Applications(MERRA),National Center for Environmental Prediction and the Department of Energy Reanalysis 2(NCEP-R2),and NCEP Final Analysis(FNL).Statistical quantities such as average,mean bias(MB),root-mean-square difference(RMSD),and correlation coefficient(R) of temperature,specific humidity,u-wind,and v-wind between 100 hPa and 650 hPa were calculated.The authors determined that the performance of each product differed with variables at different levels.The average profiles of the variables were captured by the reanalysis products,with large biases appearing at lower levels.ERA-Interim and NCEP-R2 showed the best and worst performances,respectively,for all variables.This study suggests that users should select appropriate reanalysis products according to their specific purposes for TP research. 展开更多
关键词 reanalysis products GPS sounding Eastern Himalayas
下载PDF
Simulation of the Equatorially Asymmetric Mode of the Hadley Circulation in CMIP5 Models 被引量:3
4
作者 FENG Juan LI Jianping +2 位作者 ZHU Jianlei LI Fei SUN Cheng 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第8期1129-1142,共14页
The tropical Hadley circulation (HC) plays an important role in influencing the climate in the tropics and extra-tropics. The realism of the climatological characteristics, spatial structure, and temporal evolution ... The tropical Hadley circulation (HC) plays an important role in influencing the climate in the tropics and extra-tropics. The realism of the climatological characteristics, spatial structure, and temporal evolution of the long-term variation of the principal mode of the annual mean HC (i.e., the equatorially asymmetric mode, EAM) was examined in model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The results showed that all the models are moderately successful in capturing the HC's climatological features, including the spatial pattern, meridional extent, and intensity, but not the spatial or temporal variation of the EAM. The possible reasons for the poor simulation of the long-term variability of the EAM were explored. None of the models can successfully capture the differences in the warming rate between the tropical Southern Hemisphere (SH) and Northern Hemisphere (NH), which is considered to be an important driver for the variation of the AM. Most of the models produce a faster warming in the NH than in the SH, which is the reverse of the observed trend. This leads to a reversed trend in the meridional gradient between the SH and NH, and contributes to the poor simulation of EAM variability. Thus, this aspect of the models should be improved to provide better simulations of the variability of the HC. This study suggests a possible reason for the poor simulation of the HC, which may be helpful for improving the skill of the CMIP5 models in the future. 展开更多
关键词 tropical Hadley circulation equatorially asymmetric mode CMIP5 sea surface temperature
下载PDF
A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020
5
作者 Fei Li Shupo Ma +3 位作者 Jinhuan Zhu Han Zou Peng Li Libo Zhou 《Big Earth Data》 EI 2024年第3期540-565,共26页
ABSTRACT A high-resolution meteorological dataset(≤10 km)over the Tibetan Plateau(TP)is the foundation for investigating and predicting the weather and climate over Asia.The TP Subregional Dynamical Downscaling(TPSDD... ABSTRACT A high-resolution meteorological dataset(≤10 km)over the Tibetan Plateau(TP)is the foundation for investigating and predicting the weather and climate over Asia.The TP Subregional Dynamical Downscaling(TPSDD)dataset is a newly developed high-spatial-temporal resolution gridded dataset for land‒air exchange pro-cesses and lower atmospheric structure studies over the whole TP region,taking the climate characteristics of each TP subregion into consideration.The dataset spans from 1981 to 2020,covering the TP with a temporal resolution of 2 hr and spatial resolution of 10 km.Meteorological elements of the dataset include near-surface land-air exchange parameters,such as downward/upward long-wave/shortwave radiation flux,sensible heat flux,latent heat flux,etc.In addition,the vertical distributions of 3-dimensional wind,temperature,humidity,and pressure from the surface to the lower stratosphere are also included.Independent evaluations were con-ducted to verify the performance of the TPSDD dataset by compar-ing TPSDD/reanalysis with surface and vertical observations through the calculation of statistical parameters.The results demonstrate the accuracy and superiority of this dataset against reanalysis data,which provides great potential for future climate change research. 展开更多
关键词 Tibetan Plateau WRF model dynamical downscaling land‒air interaction the lower atmosphere
原文传递
The Local Atmosphere and the Turbulent Heat Transfer in the Eastern Himalayas 被引量:1
6
作者 邹捍 李鹏 +2 位作者 马舒坡 周立波 朱金焕 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第3期435-440,共6页
To understand the local atmosphere and heat transfer and to facilitate the boundary-layer parameterization of numerical simulation and prediction, an observational campaign was conducted in the Eastern Himalayas in Ju... To understand the local atmosphere and heat transfer and to facilitate the boundary-layer parameterization of numerical simulation and prediction, an observational campaign was conducted in the Eastern Himalayas in June 2010. The local atmospheric properties and near-surface turbulent heat transfers were analyzed. The local atmosphere in this region is warmer, more humid and less windy, with weaker solar ra- diation and surface radiate heating than in the Middle Himalayas. The near-surface turbulent heat transfer in the Eastern Himalayas is weaker than that in the Middle Himalayas. The total heat transfer is mainly contributed by the latent heat transfer with a Bowen ratio of 0.36, which is essentially different from that in the Middle Himalayas and the other Tibetan regions. 展开更多
关键词 local atmosphere turbulent heat transfer Eastern Himalayas Tibetan Plateau
下载PDF
Quasi-biennial oscillation signal detected in the stratospheric zonal wind at 55–65°N 被引量:1
7
作者 ZHANG Yu ZHOU Li-Bo 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第3期147-152,共6页
To investigate the impacts of the quasi-biennial oscillation (QBO) on high-latitude circulation and the Arctic vortex, stratospheric zonal wind at 55-65°N is analyzed. The seasonal cycle, solar cycle, and linea... To investigate the impacts of the quasi-biennial oscillation (QBO) on high-latitude circulation and the Arctic vortex, stratospheric zonal wind at 55-65°N is analyzed. The seasonal cycle, solar cycle, and linear trend in the zonal wind at these latitudes are analyzed and removed, and the QBO signal is retrieved from the monthly zonal wind for the period 1979-2014. The zonal wind has a strong decreasing trend in winter, with a maximum decrease (less than -0.35 m s-1 yr-1) occurring within 70-100°E. The zonal wind has an in-phase response of 1.6 m s-1 to the solar cycle, with a maximum within 100-140°E. A clear QBO signal is detected in the zonal wind during the period 1979-2014, with an amplitude of 2.5 m s-1 and a period of 30 months. The latitudinal distribution of the QBO signal is inhomogeneous, with a maximum within 120-180°E and a minimum within 25-45°E. 展开更多
关键词 Quasi-Biennial Oscillation zonal wind Arctic vortex
下载PDF
Vertical Structures of Atmospheric Properties in Southeast Tibet during the South Asian Summer Monsoon in 2013
8
作者 周立波 李斐 +3 位作者 朱金焕 邹捍 马舒坡 李鹏 《Journal of Meteorological Research》 SCIE CSCD 2016年第2期258-264,共7页
In June 2013,a field experiment was conducted in Southeast Tibet in which the air temperature,moisture,and wind were measured by using a GPS sounding system.In the present study,based on these observations and ERA-Int... In June 2013,a field experiment was conducted in Southeast Tibet in which the air temperature,moisture,and wind were measured by using a GPS sounding system.In the present study,based on these observations and ERA-Interim reanalysis data,the vertical structures of these atmospheric properties and the possible influence of the South Asian summer monsoon(SASM) were investigated.On average,the temperature had a lapse rate of 6.8℃ km^(-1) below the tropopause of 18.0 km.A strong moisture inversion occurred at the near-surface,with a strength of 1.7 g kg^(-1)(100 m)^(-1) for specific humidity.During the observation period,the SASM experienced a south phase and a north phase in the middle and by the end of June,respectively.The monsoon's evolution led to large changes in convection and circulation over Southeast Tibet,which further affected the local thermal,moisture,and circulation conditions.The strong convection resulted in an elevated tropopause height over Southeast Tibet during the north phase of the SASM,and the large-scale warm and wet air masses delivered by the monsoon caused high local temperature and moisture conditions. 展开更多
关键词 Southeast Tibet vertical structure South Asian summer monsoon
原文传递
The Observed Near-Surface Energy Exchange Processes over Arctic Glacier in Summer
9
作者 Libo ZHOU Jinhuan ZHU +6 位作者 Linlin KONG Peng LI Shupo MA Fei LI Han ZOU Meigen ZHANG Irina REPINA 《Journal of Meteorological Research》 SCIE CSCD 2024年第3期600-607,共8页
Under Arctic warming,near-surface energy transfers have significantly changed,but few studies have focused on energy exchange over Arctic glacier due to limitations in available observations.In this study,the atmosphe... Under Arctic warming,near-surface energy transfers have significantly changed,but few studies have focused on energy exchange over Arctic glacier due to limitations in available observations.In this study,the atmospheric energy exchange processes over the Arctic glacier surface were analyzed by using observational data obtained in summer 2019 in comparison with those over the Arctic tundra surface.The energy budget over the glacier greatly differed from that over the tundra,characterized by less net shortwave radiation and downward sensible heat flux,due to the high albedo and icy surface.Most of the incoming solar radiation was injected into the glacier in summer,leading to snow ice melting.During the observation period,strong daily variations in near-surface heat transfer occurred over the Arctic glacier,with the maximum downward and upward heat fluxes occurring on 2 and 6 July 2019,respectively.Further analyses suggested that the maximum downward heat flux is mainly caused by the strong local thermal contrast above the glacier surface,while the maximum upward heat transfer cannot be explained by the classical turbulent heat transfer theory,possibly caused by countergradient heat transfer.Our results indicated that the near-surface energy exchange processes over Arctic glacier may be strongly related to local forcings,but a more in-depth investigation will be needed in the future when more observational data become available. 展开更多
关键词 ARCTIC GLACIER TUNDRA energy exchange processes
原文传递
Historical Changes and Future Projections of Extreme Temperature and Precipitation along the Sichuan-Tibet Railway 被引量:5
10
作者 Jingpeng ZHANG Tianbao ZHAO +1 位作者 Libo ZHOU Lingkun RAN 《Journal of Meteorological Research》 SCIE CSCD 2021年第3期402-415,共14页
Based on multiresource high-resolution in situ and satellite merged observations along with model simulations from the Coordinated Regional Climate Downscaling Experiment(CORDEX),this study first investigated historic... Based on multiresource high-resolution in situ and satellite merged observations along with model simulations from the Coordinated Regional Climate Downscaling Experiment(CORDEX),this study first investigated historical changes in extreme temperature and precipitation during the period of 1979-2018 in areas along the Sichuan-Tibet Railway,and then projected the future changes in the frequency and intensity of extreme temperature and precipitation under the RCP(Representative Concentration Pathway)4.5 and 8.5 scenarios.This paper is expected to enhance our understanding of the spatiotemporal variability in the extreme temperature and precipitation along the Sichuan-Tibet Railway,and to provide scientific basis to advance the Sichuan-Tibet Railway construction and operation.The results show that temperatures in the Sichuan-Tibet region display a noticeable warming trend in the past 40 years,and the increase of minimum temperature is significantly higher than that of maximum temperature in the northwest of the region.Significant increase of precipitation is found mainly over the northwest of the Tibetan Plateau.Except for Lhasa and its surrounding areas,precipitation over other areas along the Sichuan-Tibet Railway shows no significant change in the past 40 years,as indicated in five datasets;however,precipitation along the railway has shown a remarkable decrease in the past 20 years in the TRMM satellite dataset.The warm days and nights have clearly increased by 6 and 5 day decade1-for 1979-2019,while cold days and nights have markedly decreased by about 6.6 and 3.6 day decade-1,respectively.In the past 20 years,the areas with increased precipitation from very wet days and extremely wet days are mainly distributed to the north of the Sichuan-Tibet Railway,while in the areas along the railway itself,the very wet days and extremely wet days are decreasing.Under RCPs 4.5 and 8.5,the temperature in the Sichuan-Tibet region will increase significantly,and the frequency of extreme high(low)temperature events in the late 21 st century(2070-2099)will greatly increase(decrease)by about 50%-80%(10%)compared with occurrences in the late 20 th century(1970-1999).Meanwhile,the frequency of very wet days and extremely wet days in the Sichuan-Tibet region will increase by about 2%-19% and 2%-5%,respectively,and the areas along the Sichuan-Tibet Railway will be affected by more extreme high temperature and extreme precipitation events. 展开更多
关键词 Sichuan-Tibet Railway extreme temperature and precipitation historical change future projection
原文传递
Atmospheric Structure Observed over the Antarctic Plateau and Its Response to a Prominent Blocking High Event
11
作者 Jinhuan ZHU Libo ZHOU +4 位作者 Han ZOU Peng LI Fei LI Shupo MA Linlin KONG 《Journal of Meteorological Research》 SCIE CSCD 2021年第6期1091-1103,共13页
Studies on the atmospheric structure over the Antarctic Plateau are important for better understanding the weather and climate systems of polar regions.In the summer of 2017,an observational experiment was conducted a... Studies on the atmospheric structure over the Antarctic Plateau are important for better understanding the weather and climate systems of polar regions.In the summer of 2017,an observational experiment was conducted at Dome-A,the highest station in Antarctica,with a total of 32 profiles obtained from global positioning system(GPS)radiosondes.Based on observational data,the atmospheric temperature,humidity,and wind structures and their variations are investigated,and compared with those from four other stations inside the Antarctic circle.Distinguished thermal and dynamic structures were revealed over Dome-A,characterized by the lowest temperature,the highest tropopause,the largest lapse rate,and the most frequent temperature and humidity inversion.During the experiment,a prominent blocking event was identified,with great influence on the atmospheric structure over Dome-A.The blocking high produced a strong anticyclone that brought warm and moist air to the hinterland of the Antarctic Plateau,causing a much warmer,wetter,and windier troposphere over the Dome-A station.Meanwhile,a polar air mass was forced out of the Antarctic,formed a cold surge extending as far as southern New Zealand and affected the weather there.Our results proved that there would be a direct interaction between the atmosphere over the hinterland of the Antarctic Plateau and mid latitudes with the action of a blocking high.Further studies are needed to explore the interaction between the atmospheric systems over the Antarctic and mid latitudes under intense synoptic disturbance,with longterm data and numerical modeling. 展开更多
关键词 Antarctic Plateau atmospheric structure blocking high middle and high latitude interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部