In this study, we have for the first time preformed the facile substrate-enhanced electroless deposition(SEED) of metal nanoparticles onto monolithic graphene@Ni foams for construction of disposable three-dimensional(...In this study, we have for the first time preformed the facile substrate-enhanced electroless deposition(SEED) of metal nanoparticles onto monolithic graphene@Ni foams for construction of disposable three-dimensional(3 D) electrochemical immunosensors. Specifically, we firstly used the SEED method to deposit gold nanoparticles(AuNPs) onto the graphene@Ni foam for immobilization of antibody(Ab1). This is followed by a second step SEED deposition to produce silver nanoparticles(AgNPs) for electrochemical stripping detection. Using a-fetoprotein antigen(AFP) as a module analyte, the newly-developed sensor showed a wide linear response, ranging from 5.0 pg/mL to 5.0 ng/mL and a low detection limit down to 2.3 pg/mL. The newly-developed 3 D-immunosensor is sensitive, reliable,and easy to be fabricated, showing great potential for clinic applications.展开更多
In recent periods, some organic conjugated polymers with large nonlinear optical effectand fast responses are being studied widely. With them, people hope to produce ultrafastoptronic devices, such as optical switches...In recent periods, some organic conjugated polymers with large nonlinear optical effectand fast responses are being studied widely. With them, people hope to produce ultrafastoptronic devices, such as optical switches or optical modulators. However, up to now, fewpolymeric samples have been discovered to have enough large nonlinear optical effect orfast time responses to satisfy the practical applications. In this note, we report展开更多
基金financially supported by the Natural Science Foundation of Zhejiang Province (LY18H200008)Wenzhou Science and Technology Bureau Project (Y20170203)National Natural Science Foundation of China (51433005)
文摘In this study, we have for the first time preformed the facile substrate-enhanced electroless deposition(SEED) of metal nanoparticles onto monolithic graphene@Ni foams for construction of disposable three-dimensional(3 D) electrochemical immunosensors. Specifically, we firstly used the SEED method to deposit gold nanoparticles(AuNPs) onto the graphene@Ni foam for immobilization of antibody(Ab1). This is followed by a second step SEED deposition to produce silver nanoparticles(AgNPs) for electrochemical stripping detection. Using a-fetoprotein antigen(AFP) as a module analyte, the newly-developed sensor showed a wide linear response, ranging from 5.0 pg/mL to 5.0 ng/mL and a low detection limit down to 2.3 pg/mL. The newly-developed 3 D-immunosensor is sensitive, reliable,and easy to be fabricated, showing great potential for clinic applications.
文摘In recent periods, some organic conjugated polymers with large nonlinear optical effectand fast responses are being studied widely. With them, people hope to produce ultrafastoptronic devices, such as optical switches or optical modulators. However, up to now, fewpolymeric samples have been discovered to have enough large nonlinear optical effect orfast time responses to satisfy the practical applications. In this note, we report