In this paper,we define a generalized Lipschitz shadowing property for flows and prove that a flowΦgenerated by a C1vector field X on a closed Riemannian manifold M has this generalized Lipschitz shadowing property i...In this paper,we define a generalized Lipschitz shadowing property for flows and prove that a flowΦgenerated by a C1vector field X on a closed Riemannian manifold M has this generalized Lipschitz shadowing property if and only if it is structurally stable.展开更多
基金supported by National Natural Science Foundation of China(12071018)Fundamental Research Funds for the Central Universitiessupported by the National Research Foundation of Korea(NRF)funded by the Korea government(MIST)(2020R1F1A1A01051370)。
文摘In this paper,we define a generalized Lipschitz shadowing property for flows and prove that a flowΦgenerated by a C1vector field X on a closed Riemannian manifold M has this generalized Lipschitz shadowing property if and only if it is structurally stable.