The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell w...The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell waste.The Ca O desiccant derived from the eggshell waste sintering at 1300℃,while the CaCl_(2)desiccant was extracted from eggshell waste with the hydrochloric(HCl)solution at difierent concentrations from 5 to 30 wt%.The yield percentage of CaCl_(2)desiccant increased with increasing the HCl concentration to 25 wt%.The humidity adsorption behavior were investigated in the range of 75%-5%relative humidity.The results show the CaCl_(2)desiccant has the highest hydration rate.The porous host from the kaolin was sintered at different temperatures from 200 to 1000℃and incorporated with 30%w/v concentrations of CaCl_(2).The physical properties and the humid-adsorption capacity of all porous host conditions were investigated.The porous host at sintering temperature 800℃has the highest specific surface area.Moreover,the porous host at sintering temperature 800℃with the 30%w/v concentration of CaCl_(2)desiccant has the highest humid-adsorption capacity.展开更多
In continuous casting rolling process, the deformed body is different from the hot rolling strip. The metal in casting rolling zone is first assumed to be viscous fluid and the mathematical model of casting rolling fo...In continuous casting rolling process, the deformed body is different from the hot rolling strip. The metal in casting rolling zone is first assumed to be viscous fluid and the mathematical model of casting rolling force is established, then the calculating formula for casting rolling torque is derived. In addition, considering the effects of deforming cone and appendant torque of rotary junctions sealing ring, the calculating model which accords with casting rolling condition is found out. Theoretical formula is proved by experiment.展开更多
In this work, the possibility of enhanced activity during the hydrodesulfurization of dibenzothiophene over certain nano-MoS<sub>2</sub> catalyst due to the presence of H<sub>2</sub>S was exami...In this work, the possibility of enhanced activity during the hydrodesulfurization of dibenzothiophene over certain nano-MoS<sub>2</sub> catalyst due to the presence of H<sub>2</sub>S was examined by focusing on the reaction kinetics. With H<sub>2</sub>S generated <i>in situ</i>, the overall reaction followed the autocatalytic rate law;while in the absence of H<sub>2</sub>S the kinetics indicated a pseudo-first-order reaction. H<sub>2</sub>S appears to modify the relative contributions of parallel hydrogenation and desulfurization reactions by drastically increasing the hydrogenation rate. Kinetic models were developed that describe the hydrodesulfurization reaction at various H<sub>2</sub>S concentrations, and the kinetic parameters and adsorption equilibrium constants associated with this process were estimated by fitting the experimental data. The results suggest that the promotion and/or inhibition of hydrodesulfurization by H<sub>2</sub>S likely result from the same overall reaction mechanism.展开更多
基金the research professional development project under the Science Achievement Scholarship of Thailand(SAST)for education financial support。
文摘The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell waste.The Ca O desiccant derived from the eggshell waste sintering at 1300℃,while the CaCl_(2)desiccant was extracted from eggshell waste with the hydrochloric(HCl)solution at difierent concentrations from 5 to 30 wt%.The yield percentage of CaCl_(2)desiccant increased with increasing the HCl concentration to 25 wt%.The humidity adsorption behavior were investigated in the range of 75%-5%relative humidity.The results show the CaCl_(2)desiccant has the highest hydration rate.The porous host from the kaolin was sintered at different temperatures from 200 to 1000℃and incorporated with 30%w/v concentrations of CaCl_(2).The physical properties and the humid-adsorption capacity of all porous host conditions were investigated.The porous host at sintering temperature 800℃has the highest specific surface area.Moreover,the porous host at sintering temperature 800℃with the 30%w/v concentration of CaCl_(2)desiccant has the highest humid-adsorption capacity.
文摘In continuous casting rolling process, the deformed body is different from the hot rolling strip. The metal in casting rolling zone is first assumed to be viscous fluid and the mathematical model of casting rolling force is established, then the calculating formula for casting rolling torque is derived. In addition, considering the effects of deforming cone and appendant torque of rotary junctions sealing ring, the calculating model which accords with casting rolling condition is found out. Theoretical formula is proved by experiment.
文摘In this work, the possibility of enhanced activity during the hydrodesulfurization of dibenzothiophene over certain nano-MoS<sub>2</sub> catalyst due to the presence of H<sub>2</sub>S was examined by focusing on the reaction kinetics. With H<sub>2</sub>S generated <i>in situ</i>, the overall reaction followed the autocatalytic rate law;while in the absence of H<sub>2</sub>S the kinetics indicated a pseudo-first-order reaction. H<sub>2</sub>S appears to modify the relative contributions of parallel hydrogenation and desulfurization reactions by drastically increasing the hydrogenation rate. Kinetic models were developed that describe the hydrodesulfurization reaction at various H<sub>2</sub>S concentrations, and the kinetic parameters and adsorption equilibrium constants associated with this process were estimated by fitting the experimental data. The results suggest that the promotion and/or inhibition of hydrodesulfurization by H<sub>2</sub>S likely result from the same overall reaction mechanism.