There is a growing interest in sustainable and high performance supercapacitors(SCs) operating at elevated temperatures as they are highly demanded in heat-durable electronics. Here, we present a biomass-derived nonfl...There is a growing interest in sustainable and high performance supercapacitors(SCs) operating at elevated temperatures as they are highly demanded in heat-durable electronics. Here, we present a biomass-derived nonfluorinated ionic liquid(IL) [P_(4444)][HFuA] and its structural analogue [P_(4444)][TpA]as electrolytes for supercapacitors comprising multiwall carbon nanotubes and activated charcoal(MWCNTs/AC) mixed carbon composite electrodes. A detailed investigation of the effect of scan rate, temperature, potential window and orientation of ions on the electrodes surfaces is performed. The supercapacitors exhibited relatively lower specific capacitance for both [P_(4444)][HFuA] and [P_(4444)][TpA] ILs at room temperature. However, the specific capacitance has significantly increased with an increase in temperature and potential window. The equivalent serie resistances of the SCs is deceased with increasing temperatures, which is a result of improved ionic conductivities of the IL electrolytes. In CV cycling at60 °C, the capacitor with [P_(4444)][HFuA] IL-based electrolyte retained about 90% of its initial capacitance,while the capacitor with [P_(4444)][TpA] IL-based electrolyte retained about 83% of its initial capacitance.Atomistic computations revealed that the aromatic [FuA]^(-) and [TpA]^(-) anions displayed perpendicular distribution that can effectively neutralize charges on the carbon surfaces. However, the [HFuA]-anion exhibited somewhat tilted configurations on the carbon electrode surfaces, contributing to their outstanding capacitive performance in electrochemical devices.展开更多
基金the financial support in the form of a stipend for IAK (grant number: SMK-1838)The financial support from the Swedish Research Council (project number: 201804133) is gratefully acknowledged for supporting this workNSC partially funded by Swedish Research Council through grant agreement no. 2016-07213。
文摘There is a growing interest in sustainable and high performance supercapacitors(SCs) operating at elevated temperatures as they are highly demanded in heat-durable electronics. Here, we present a biomass-derived nonfluorinated ionic liquid(IL) [P_(4444)][HFuA] and its structural analogue [P_(4444)][TpA]as electrolytes for supercapacitors comprising multiwall carbon nanotubes and activated charcoal(MWCNTs/AC) mixed carbon composite electrodes. A detailed investigation of the effect of scan rate, temperature, potential window and orientation of ions on the electrodes surfaces is performed. The supercapacitors exhibited relatively lower specific capacitance for both [P_(4444)][HFuA] and [P_(4444)][TpA] ILs at room temperature. However, the specific capacitance has significantly increased with an increase in temperature and potential window. The equivalent serie resistances of the SCs is deceased with increasing temperatures, which is a result of improved ionic conductivities of the IL electrolytes. In CV cycling at60 °C, the capacitor with [P_(4444)][HFuA] IL-based electrolyte retained about 90% of its initial capacitance,while the capacitor with [P_(4444)][TpA] IL-based electrolyte retained about 83% of its initial capacitance.Atomistic computations revealed that the aromatic [FuA]^(-) and [TpA]^(-) anions displayed perpendicular distribution that can effectively neutralize charges on the carbon surfaces. However, the [HFuA]-anion exhibited somewhat tilted configurations on the carbon electrode surfaces, contributing to their outstanding capacitive performance in electrochemical devices.