It is well-known that artificial boundary conditions are crucial for the efficient and accurate computations of wavefields on unbounded domains. In this paper, we investigate stability analysis for the wave equation c...It is well-known that artificial boundary conditions are crucial for the efficient and accurate computations of wavefields on unbounded domains. In this paper, we investigate stability analysis for the wave equation coupled with the first and the second order absorbing boundary conditions. The computational scheme is also developed. The approach allows the absorbing boundary conditions to be naturally imposed, which makes it easier for us to construct high order schemes for the absorbing boundary conditions. A thirdorder Lagrange finite element method with mass lumping is applied to obtain the spatial discretization of the wave equation. The resulting scheme is stable and is very efficient since no matrix inversion is needed at each time step. Moreover, we have shown both abstract and explicit conditional stability results for the fully-discrete schemes. The results are helpful for designing computational parameters in computations. Numerical computations are illustrated to show the efficiency and accuracy of our method. In particular, essentially no boundary reflection is seen at the artificial boundaries.展开更多
Jockusch, Li and Yang showed that the Lown and Low1 r.e. degrees are not elementarily equivalent for n>1. We answer a question they raise by using the results of Nies, Shore and Slaman to show that the Lown and Low...Jockusch, Li and Yang showed that the Lown and Low1 r.e. degrees are not elementarily equivalent for n>1. We answer a question they raise by using the results of Nies, Shore and Slaman to show that the Lown and Lowm r.e. degrees are not elementarily equivalent for n > m > 1.展开更多
文摘It is well-known that artificial boundary conditions are crucial for the efficient and accurate computations of wavefields on unbounded domains. In this paper, we investigate stability analysis for the wave equation coupled with the first and the second order absorbing boundary conditions. The computational scheme is also developed. The approach allows the absorbing boundary conditions to be naturally imposed, which makes it easier for us to construct high order schemes for the absorbing boundary conditions. A thirdorder Lagrange finite element method with mass lumping is applied to obtain the spatial discretization of the wave equation. The resulting scheme is stable and is very efficient since no matrix inversion is needed at each time step. Moreover, we have shown both abstract and explicit conditional stability results for the fully-discrete schemes. The results are helpful for designing computational parameters in computations. Numerical computations are illustrated to show the efficiency and accuracy of our method. In particular, essentially no boundary reflection is seen at the artificial boundaries.
文摘Jockusch, Li and Yang showed that the Lown and Low1 r.e. degrees are not elementarily equivalent for n>1. We answer a question they raise by using the results of Nies, Shore and Slaman to show that the Lown and Lowm r.e. degrees are not elementarily equivalent for n > m > 1.