The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined.The classical Navier-Stokes equations are considered in a porous frame.In additio...The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined.The classical Navier-Stokes equations are considered in a porous frame.In addition,the Lorentz force is taken into account.The controlling coupled nonlinear partial differential equations are transformed into a system of first order ordinary differential equations by means of a similarity transformation.The resulting system of equations is solved by employing a shooting approach properly implemented in MATLAB.The evolution of the boundary layer and the growing velocity is shown graphically together with the related profiles of concentration and temperature.The magnetic field has a different influence(in terms of trends)on velocity and concentration.展开更多
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-D...This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-DG,implementing the aSG-DG method,is available on GitHub at https://github.com/JuntaoHuang/adaptive-multiresolution-DG.The package is capable of treating a large class of high dimensional linear and nonlinear PDEs.We review the essential components of the algorithm and the functionality of the software,including the multiwavelets used,assembling of bilinear operators,fast matrix-vector product for data with hierarchical structures.We further demonstrate the performance of the package by reporting the numerical error and the CPU cost for several benchmark tests,including linear transport equations,wave equations,and Hamilton-Jacobi(HJ)equations.展开更多
This article addresses the issue of computing the constant required to implement a specific nonparametric subset selection procedure based on ranks of data arising in a statistical randomized block experimental design...This article addresses the issue of computing the constant required to implement a specific nonparametric subset selection procedure based on ranks of data arising in a statistical randomized block experimental design. A model of three populations and two blocks is used to compute the probability distribution of the relevant statistic, the maximum of the population rank sums minus the rank sum of the “best” population. Calculations are done for populations following a normal distribution, and for populations following a bi-uniform distribution. The least favorable configuration in these cases is shown to arise when all three populations follow identical distributions. The bi-uniform distribution leads to an asymptotic counterexample to the conjecture that the least favorable configuration, i.e., that configuration minimizing the probability of a correct selection, occurs when all populations are identically distributed. These results are consistent with other large-scale simulation studies. All relevant computational R-codes are provided in appendices.展开更多
In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscil...In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscillatory are established by using a new nonlinear integral inequality. Our results substantially extend and improve previous results known in the literature.展开更多
In this paper, a new statistical averaging technique is proposed for finding an optimal solution to a multi-objective linear fractional programming problem (MOLFPP) and multi-objective linear programming problem (MOLP...In this paper, a new statistical averaging technique is proposed for finding an optimal solution to a multi-objective linear fractional programming problem (MOLFPP) and multi-objective linear programming problem (MOLPP) by using new arithmetic averaging method and new geometric averaging method. It is significantly noticeable same characteristics among all the technique while taking maximum or minimum among all optimized values for multi-objective functions using simplex algorithm. The characteristics provided from the problems are verified by the numerical examples.展开更多
This study employs mathematical modeling to analyze the impact of active immigrants on Foot and Mouth Disease (FMD) transmission dynamics. We calculate the reproduction number (R<sub>0</sub>) using the nex...This study employs mathematical modeling to analyze the impact of active immigrants on Foot and Mouth Disease (FMD) transmission dynamics. We calculate the reproduction number (R<sub>0</sub>) using the next-generation matrix approach. Applying the Routh-Hurwitz Criterion, we establish that the Disease-Free Equilibrium (DFE) point achieves local asymptotic stability when R<sub>0</sub> α<sub>1</sub> and α<sub>2</sub>) are closely associated with reduced susceptibility in animal populations, underscoring the link between immigrants and susceptibility. Furthermore, our findings emphasize the interplay of disease introduction with population response and adaptation, particularly involving incoming infectious immigrants. Swift interventions are vital due to the limited potential for disease establishment and rapid susceptibility decline. This study offers crucial insights into the complexities of FMD transmission with active immigrants, informing effective disease management strategies.展开更多
Let the triangle matrix A^(ru)be a generalization of the Cesàro matrix and U∈{c_(0),c,l_(∞)}.In this study,we essentially deal with the space U(A^(ru))defined by the domain of A^(ru)in the space U and give the ...Let the triangle matrix A^(ru)be a generalization of the Cesàro matrix and U∈{c_(0),c,l_(∞)}.In this study,we essentially deal with the space U(A^(ru))defined by the domain of A^(ru)in the space U and give the bases,and determine the Kothe-Toeplitz,generalized K?theToeplitz and bounded-duals of the space U(A^(ru)).We characterize the classes(l_(∞)(A^(ru)):l_(∞)),(l_(∞)(A^(ru)):c),(c(A^(ru)):c),and(U:V(A^(ru)))of infinite matrices,where V denotes any given sequence space.Additionally,we also present a Steinhaus type theorem.As an another result of this study,we investigate the l_(p)-norm of the matrix A^(ru)and as a result obtaining a generalized version of Hardy's inequality,and some inclusion relations.Moreover,we compute the norm of well-known operators on the matrix domain l_(p)(A^(ru)).展开更多
The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, a...The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.展开更多
A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theor...A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theory of BCFN-SS is the generalisation of two various theories,that is,bipolar complex fuzzy(BCF)and N-SS.The invented model of BCFN-SS helps decision-makers to cope with the genuine-life dilemmas containing BCF information along with parameterised grading at the same time.Further,various algebraic operations,including the usual type of union,intersection,complements,and a few others types,are invented.Certain primary operational laws for BCFNSS are also invented.Moreover,a technique for order preference by similarity to the ideal solution(TOPSIS)approach is devised in the setting of BCFN-SS for managing strategic decision-making(DM)dilemmas containing BCFN-SS information.Keeping in mind the usefulness and benefits of the TOPSIS approach,two various types of TOPSIS approaches in the environment of BCFN-SS are devised and then a numerical example for exposing the usefulness of the devised TOPSIS approach is interpreted.To disclose the prominence and benefits of the devised work,the devised approaches with numerous prevailing work are compared.展开更多
In that paper,we new study has been carried out on previous studies of one of the most important mathematical models that describe the global economic movement,and that is described as a non-linear fractional financia...In that paper,we new study has been carried out on previous studies of one of the most important mathematical models that describe the global economic movement,and that is described as a non-linear fractional financial model of awareness,where the studies are represented at the steps following:One:The schematic of the model is suggested.Two:The disease-free equilibrium point(DFE)and the stability of the equilibrium point are discussed.Three:The stability of the model is fulfilled by drawing the Lyapunov exponents and Poincare map.Fourth:The existence of uniformly stable solutions have discussed.Five:The Caputo is described as the fractional derivative.Six:Fractional optimal control for NFFMA is discussed by clarifying the fractional optimal control through drawing before and after control.Seven:Reduced differential transform method(RDTM)and Sumudu Decomposition Method(SDM)are used to take the resolution of an NFFMA.Finally,we display that SDM and RDTM are highly identical.展开更多
In this article,a Susceptible-Exposed-Infectious-Recovered(SEIR)epidemic model is considered.The equilibrium analysis and reproduction number are studied.The conventional models have made assumptions of homogeneity in...In this article,a Susceptible-Exposed-Infectious-Recovered(SEIR)epidemic model is considered.The equilibrium analysis and reproduction number are studied.The conventional models have made assumptions of homogeneity in disease transmission that contradict the actual reality.However,it is crucial to consider the heterogeneity of the transmission rate when modeling disease dynamics.Describing the heterogeneity of disease transmission mathematically can be achieved by incorporating fuzzy theory.A numerical scheme nonstandard,finite difference(NSFD)approach is developed for the studied model and the results of numerical simulations are presented.Simulations of the constructed scheme are presented.The positivity,convergence and consistency of the developed technique are investigated using mathematical induction,Jacobean matrix and Taylor series expansions respectively.The suggested scheme preserves all these essential characteristics of the disease dynamical models.The numerical and simulation results reveal that the proposed NSFD method provides an adequate representation of the dynamics of the disease.Moreover,the obtained method generates plausible predictions that can be used by regulators to support the decision-making process to design and develop control strategies.Effects of the natural immunity on the infected class are studied which reveals that an increase in natural immunity can decrease the infection and vice versa.展开更多
Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.T...Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.展开更多
This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governi...This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.展开更多
Artificial intelligence is demonstrated by machines,unlike the natural intelligence displayed by animals,including humans.Artificial intelligence research has been defined as the field of study of intelligent agents,w...Artificial intelligence is demonstrated by machines,unlike the natural intelligence displayed by animals,including humans.Artificial intelligence research has been defined as the field of study of intelligent agents,which refers to any system that perceives its environment and takes actions that maximize its chance of achieving its goals.The techniques of intelligent computing solve many applications of mathematical modeling.The researchworkwas designed via a particularmethod of artificial neural networks to solve the mathematical model of coronavirus.The representation of the mathematical model is made via systems of nonlinear ordinary differential equations.These differential equations are established by collecting the susceptible,the exposed,the symptomatic,super spreaders,infection with asymptomatic,hospitalized,recovery,and fatality classes.The generation of the coronavirus model’s dataset is exploited by the strength of the explicit Runge Kutta method for different countries like India,Pakistan,Italy,and many more.The generated dataset is approximately used for training,validation,and testing processes for each cyclic update in Bayesian Regularization Backpropagation for the numerical treatment of the dynamics of the desired model.The performance and effectiveness of the designed methodology are checked through mean squared error,error histograms,numerical solutions,absolute error,and regression analysis.展开更多
Urea as a source of cheap non-protein nitrogen is used to adulterate fish and meat meals which are basic components of broiler diets. The present study was carried out to elucidate the effects of urea on weight gain, ...Urea as a source of cheap non-protein nitrogen is used to adulterate fish and meat meals which are basic components of broiler diets. The present study was carried out to elucidate the effects of urea on weight gain, and hematological and biochemical profiles. A total of 48 broiler chicks were randomly allotted into 4 groups, designated Groups 1, 2, 3 and 4 of 12 birds each. Birds in Groups 2, 3 and 4 were fed on diets containing urea at the levels of 1%, 2.5% and 4%, respectively. Birds in Group 1 served as control and were not exposed to urea. Experimentation period was for 3 weeks and experiment was terminated when birds were 42 days of age. Body weight of all intoxicated birds at the various intervals was significantly decreased in comparison with that of the untreated control. Compared with control, all intoxicated broilers manifested significant (P ≤ 0.05) decrease in all hematological parameters involving erythrocytic and total leucocytic counts, Hemoglobin (Hb) and Packed Cell Volume (PCV) on a dose- and time-pattern. In comparison with the control levels, biochemical profile of the intoxicated birds disclosed significant decrease in blood glucose level and significant increase in serum uric acid, urea, Alkaline Phosphatase (ALP) and Lactate Dehydrogenase (LDH) levels. Based upon the present data, it was concluded that the addition of urea to broiler diets bears serious sequences concerning the general health condition, performance, weight gain, and hematological and biochemical profiles.展开更多
The first major outbreak of the severely complicated hand,foot and mouth disease(HFMD),primarily caused by enterovirus 71,was reported in Taiwan in 1998.HFMD surveillance is needed to assess the spread of HFMD.The par...The first major outbreak of the severely complicated hand,foot and mouth disease(HFMD),primarily caused by enterovirus 71,was reported in Taiwan in 1998.HFMD surveillance is needed to assess the spread of HFMD.The parameters we use in mathematical models are usually classical mathematical parameters,called crisp parameters,which are taken for granted.But any biological or physical phenomenon is best explained by uncertainty.To represent a realistic situation in any mathematical model,fuzzy parameters can be very useful.Many articles have been published on how to control and prevent HFMD from the perspective of public health and statistical modeling.However,few works use fuzzy theory in building models to simulateHFMDdynamics.In this context,we examined anHFMD model with fuzzy parameters.A Non Standard Finite Difference(NSFD)scheme is developed to solve the model.The developed technique retains essential properties such as positivity and dynamic consistency.Numerical simulations are presented to support the analytical results.The convergence and consistency of the proposed method are also discussed.The proposed method converges unconditionally while the many classical methods in the literature do not possess this property.In this regard,our proposed method can be considered as a reliable tool for studying the dynamics of HFMD.展开更多
A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in th...A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine.展开更多
In this present paper, we introduce and investigate a new form of mappings namely;upper and lower M-asymmetric preirresolute multifunctions defined between M-structural asymmetric topological spaces. The relationships...In this present paper, we introduce and investigate a new form of mappings namely;upper and lower M-asymmetric preirresolute multifunctions defined between M-structural asymmetric topological spaces. The relationships between the multifunctions in our sense and other types of precountinuous and preirresolute multifunctions defined on both symmetric and asymmetric topological structures are discussed.展开更多
Governments influence the economy by changing the level and types of taxes, the extent and composition of spending, and the degree and form of borrowing. Governments directly and indirectly influence the way resources...Governments influence the economy by changing the level and types of taxes, the extent and composition of spending, and the degree and form of borrowing. Governments directly and indirectly influence the way resources are used in the economy. Higher taxes, fees, and greater regulations can stymie businesses or entire industries and the resulting impact is reflected on the country’s economy status (strong or weak). The growth rate of GDP is often used as an indicator of the general health of the economy. In broad terms, an increase in real GDP is interpreted as a sign that the economy is doing well. So it is important to study and pay more attention to country’s GDP growth rate. In this paper, an intervention analysis approach was applied to Nigeria GDP data in order to evaluate the performances of military and civilian rules in the country. Data on Nigeria GDP were collected and subjected to interrupted (intervention) time series model. Based on the Alkaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and sigma<sup>2</sup> values, the interrupted time series model ARIMA (1, 1, 0) with exogenous variables (per capita per capita GDP, intervention, year and yearAfter) was identified as the best model amongst other competing models. It was observed that the intervention (civilian rule) was significant at the 10% level of significance in increasing the Nigeria GDP by 10B US$ on the average since 2005 till 2021 while controlling for the effects of other determinants. Also, the ARIMA (1, 1, 0) forecasts indicate that the Nigeria GDP will continue increasing during the civilian rule. As a result, changing from military rule to civilian rule in Nigeria significantly increased the GDP of the country.展开更多
文摘The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined.The classical Navier-Stokes equations are considered in a porous frame.In addition,the Lorentz force is taken into account.The controlling coupled nonlinear partial differential equations are transformed into a system of first order ordinary differential equations by means of a similarity transformation.The resulting system of equations is solved by employing a shooting approach properly implemented in MATLAB.The evolution of the boundary layer and the growing velocity is shown graphically together with the related profiles of concentration and temperature.The magnetic field has a different influence(in terms of trends)on velocity and concentration.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
基金supported by the NSF grant DMS-2111383Air Force Office of Scientific Research FA9550-18-1-0257the NSF grant DMS-2011838.
文摘This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-DG,implementing the aSG-DG method,is available on GitHub at https://github.com/JuntaoHuang/adaptive-multiresolution-DG.The package is capable of treating a large class of high dimensional linear and nonlinear PDEs.We review the essential components of the algorithm and the functionality of the software,including the multiwavelets used,assembling of bilinear operators,fast matrix-vector product for data with hierarchical structures.We further demonstrate the performance of the package by reporting the numerical error and the CPU cost for several benchmark tests,including linear transport equations,wave equations,and Hamilton-Jacobi(HJ)equations.
文摘This article addresses the issue of computing the constant required to implement a specific nonparametric subset selection procedure based on ranks of data arising in a statistical randomized block experimental design. A model of three populations and two blocks is used to compute the probability distribution of the relevant statistic, the maximum of the population rank sums minus the rank sum of the “best” population. Calculations are done for populations following a normal distribution, and for populations following a bi-uniform distribution. The least favorable configuration in these cases is shown to arise when all three populations follow identical distributions. The bi-uniform distribution leads to an asymptotic counterexample to the conjecture that the least favorable configuration, i.e., that configuration minimizing the probability of a correct selection, occurs when all populations are identically distributed. These results are consistent with other large-scale simulation studies. All relevant computational R-codes are provided in appendices.
文摘In this paper, we study the second-order nonlinear differential systems of Liénard-type x˙=1a(x)[ h(y)−F(x) ], y˙=−a(x)g(x). Necessary and sufficient conditions to ensure that all nontrivial solutions are oscillatory are established by using a new nonlinear integral inequality. Our results substantially extend and improve previous results known in the literature.
文摘In this paper, a new statistical averaging technique is proposed for finding an optimal solution to a multi-objective linear fractional programming problem (MOLFPP) and multi-objective linear programming problem (MOLPP) by using new arithmetic averaging method and new geometric averaging method. It is significantly noticeable same characteristics among all the technique while taking maximum or minimum among all optimized values for multi-objective functions using simplex algorithm. The characteristics provided from the problems are verified by the numerical examples.
文摘This study employs mathematical modeling to analyze the impact of active immigrants on Foot and Mouth Disease (FMD) transmission dynamics. We calculate the reproduction number (R<sub>0</sub>) using the next-generation matrix approach. Applying the Routh-Hurwitz Criterion, we establish that the Disease-Free Equilibrium (DFE) point achieves local asymptotic stability when R<sub>0</sub> α<sub>1</sub> and α<sub>2</sub>) are closely associated with reduced susceptibility in animal populations, underscoring the link between immigrants and susceptibility. Furthermore, our findings emphasize the interplay of disease introduction with population response and adaptation, particularly involving incoming infectious immigrants. Swift interventions are vital due to the limited potential for disease establishment and rapid susceptibility decline. This study offers crucial insights into the complexities of FMD transmission with active immigrants, informing effective disease management strategies.
文摘Let the triangle matrix A^(ru)be a generalization of the Cesàro matrix and U∈{c_(0),c,l_(∞)}.In this study,we essentially deal with the space U(A^(ru))defined by the domain of A^(ru)in the space U and give the bases,and determine the Kothe-Toeplitz,generalized K?theToeplitz and bounded-duals of the space U(A^(ru)).We characterize the classes(l_(∞)(A^(ru)):l_(∞)),(l_(∞)(A^(ru)):c),(c(A^(ru)):c),and(U:V(A^(ru)))of infinite matrices,where V denotes any given sequence space.Additionally,we also present a Steinhaus type theorem.As an another result of this study,we investigate the l_(p)-norm of the matrix A^(ru)and as a result obtaining a generalized version of Hardy's inequality,and some inclusion relations.Moreover,we compute the norm of well-known operators on the matrix domain l_(p)(A^(ru)).
基金Project supported by the DST-FIST Program for Higher Education Institutions of India(No. SR/FST/MS-I/2018/23(C))。
文摘The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.
文摘A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theory of BCFN-SS is the generalisation of two various theories,that is,bipolar complex fuzzy(BCF)and N-SS.The invented model of BCFN-SS helps decision-makers to cope with the genuine-life dilemmas containing BCF information along with parameterised grading at the same time.Further,various algebraic operations,including the usual type of union,intersection,complements,and a few others types,are invented.Certain primary operational laws for BCFNSS are also invented.Moreover,a technique for order preference by similarity to the ideal solution(TOPSIS)approach is devised in the setting of BCFN-SS for managing strategic decision-making(DM)dilemmas containing BCFN-SS information.Keeping in mind the usefulness and benefits of the TOPSIS approach,two various types of TOPSIS approaches in the environment of BCFN-SS are devised and then a numerical example for exposing the usefulness of the devised TOPSIS approach is interpreted.To disclose the prominence and benefits of the devised work,the devised approaches with numerous prevailing work are compared.
文摘In that paper,we new study has been carried out on previous studies of one of the most important mathematical models that describe the global economic movement,and that is described as a non-linear fractional financial model of awareness,where the studies are represented at the steps following:One:The schematic of the model is suggested.Two:The disease-free equilibrium point(DFE)and the stability of the equilibrium point are discussed.Three:The stability of the model is fulfilled by drawing the Lyapunov exponents and Poincare map.Fourth:The existence of uniformly stable solutions have discussed.Five:The Caputo is described as the fractional derivative.Six:Fractional optimal control for NFFMA is discussed by clarifying the fractional optimal control through drawing before and after control.Seven:Reduced differential transform method(RDTM)and Sumudu Decomposition Method(SDM)are used to take the resolution of an NFFMA.Finally,we display that SDM and RDTM are highly identical.
基金funded by the Ministry of Education in Saudi Arabia of funder Grant Number ISP22-6 and the APC was funded by the Ministry of Education in Saudi Arabia.
文摘In this article,a Susceptible-Exposed-Infectious-Recovered(SEIR)epidemic model is considered.The equilibrium analysis and reproduction number are studied.The conventional models have made assumptions of homogeneity in disease transmission that contradict the actual reality.However,it is crucial to consider the heterogeneity of the transmission rate when modeling disease dynamics.Describing the heterogeneity of disease transmission mathematically can be achieved by incorporating fuzzy theory.A numerical scheme nonstandard,finite difference(NSFD)approach is developed for the studied model and the results of numerical simulations are presented.Simulations of the constructed scheme are presented.The positivity,convergence and consistency of the developed technique are investigated using mathematical induction,Jacobean matrix and Taylor series expansions respectively.The suggested scheme preserves all these essential characteristics of the disease dynamical models.The numerical and simulation results reveal that the proposed NSFD method provides an adequate representation of the dynamics of the disease.Moreover,the obtained method generates plausible predictions that can be used by regulators to support the decision-making process to design and develop control strategies.Effects of the natural immunity on the infected class are studied which reveals that an increase in natural immunity can decrease the infection and vice versa.
文摘Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.
基金the Fundamental Research Grant Scheme(FRGS)under a grant number of FRGS/1/2018/STG06/UNIMAP/02/3 from the Ministry of Education Malaysia。
文摘This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.
基金The authors extend their appreciation to the Deanship of ScientificResearch at King Khalid University for funding this work through Large Groups(Project under Grant Number(RGP.2/116/43)).
文摘Artificial intelligence is demonstrated by machines,unlike the natural intelligence displayed by animals,including humans.Artificial intelligence research has been defined as the field of study of intelligent agents,which refers to any system that perceives its environment and takes actions that maximize its chance of achieving its goals.The techniques of intelligent computing solve many applications of mathematical modeling.The researchworkwas designed via a particularmethod of artificial neural networks to solve the mathematical model of coronavirus.The representation of the mathematical model is made via systems of nonlinear ordinary differential equations.These differential equations are established by collecting the susceptible,the exposed,the symptomatic,super spreaders,infection with asymptomatic,hospitalized,recovery,and fatality classes.The generation of the coronavirus model’s dataset is exploited by the strength of the explicit Runge Kutta method for different countries like India,Pakistan,Italy,and many more.The generated dataset is approximately used for training,validation,and testing processes for each cyclic update in Bayesian Regularization Backpropagation for the numerical treatment of the dynamics of the desired model.The performance and effectiveness of the designed methodology are checked through mean squared error,error histograms,numerical solutions,absolute error,and regression analysis.
文摘Urea as a source of cheap non-protein nitrogen is used to adulterate fish and meat meals which are basic components of broiler diets. The present study was carried out to elucidate the effects of urea on weight gain, and hematological and biochemical profiles. A total of 48 broiler chicks were randomly allotted into 4 groups, designated Groups 1, 2, 3 and 4 of 12 birds each. Birds in Groups 2, 3 and 4 were fed on diets containing urea at the levels of 1%, 2.5% and 4%, respectively. Birds in Group 1 served as control and were not exposed to urea. Experimentation period was for 3 weeks and experiment was terminated when birds were 42 days of age. Body weight of all intoxicated birds at the various intervals was significantly decreased in comparison with that of the untreated control. Compared with control, all intoxicated broilers manifested significant (P ≤ 0.05) decrease in all hematological parameters involving erythrocytic and total leucocytic counts, Hemoglobin (Hb) and Packed Cell Volume (PCV) on a dose- and time-pattern. In comparison with the control levels, biochemical profile of the intoxicated birds disclosed significant decrease in blood glucose level and significant increase in serum uric acid, urea, Alkaline Phosphatase (ALP) and Lactate Dehydrogenase (LDH) levels. Based upon the present data, it was concluded that the addition of urea to broiler diets bears serious sequences concerning the general health condition, performance, weight gain, and hematological and biochemical profiles.
文摘The first major outbreak of the severely complicated hand,foot and mouth disease(HFMD),primarily caused by enterovirus 71,was reported in Taiwan in 1998.HFMD surveillance is needed to assess the spread of HFMD.The parameters we use in mathematical models are usually classical mathematical parameters,called crisp parameters,which are taken for granted.But any biological or physical phenomenon is best explained by uncertainty.To represent a realistic situation in any mathematical model,fuzzy parameters can be very useful.Many articles have been published on how to control and prevent HFMD from the perspective of public health and statistical modeling.However,few works use fuzzy theory in building models to simulateHFMDdynamics.In this context,we examined anHFMD model with fuzzy parameters.A Non Standard Finite Difference(NSFD)scheme is developed to solve the model.The developed technique retains essential properties such as positivity and dynamic consistency.Numerical simulations are presented to support the analytical results.The convergence and consistency of the proposed method are also discussed.The proposed method converges unconditionally while the many classical methods in the literature do not possess this property.In this regard,our proposed method can be considered as a reliable tool for studying the dynamics of HFMD.
文摘A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine.
文摘In this present paper, we introduce and investigate a new form of mappings namely;upper and lower M-asymmetric preirresolute multifunctions defined between M-structural asymmetric topological spaces. The relationships between the multifunctions in our sense and other types of precountinuous and preirresolute multifunctions defined on both symmetric and asymmetric topological structures are discussed.
文摘Governments influence the economy by changing the level and types of taxes, the extent and composition of spending, and the degree and form of borrowing. Governments directly and indirectly influence the way resources are used in the economy. Higher taxes, fees, and greater regulations can stymie businesses or entire industries and the resulting impact is reflected on the country’s economy status (strong or weak). The growth rate of GDP is often used as an indicator of the general health of the economy. In broad terms, an increase in real GDP is interpreted as a sign that the economy is doing well. So it is important to study and pay more attention to country’s GDP growth rate. In this paper, an intervention analysis approach was applied to Nigeria GDP data in order to evaluate the performances of military and civilian rules in the country. Data on Nigeria GDP were collected and subjected to interrupted (intervention) time series model. Based on the Alkaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and sigma<sup>2</sup> values, the interrupted time series model ARIMA (1, 1, 0) with exogenous variables (per capita per capita GDP, intervention, year and yearAfter) was identified as the best model amongst other competing models. It was observed that the intervention (civilian rule) was significant at the 10% level of significance in increasing the Nigeria GDP by 10B US$ on the average since 2005 till 2021 while controlling for the effects of other determinants. Also, the ARIMA (1, 1, 0) forecasts indicate that the Nigeria GDP will continue increasing during the civilian rule. As a result, changing from military rule to civilian rule in Nigeria significantly increased the GDP of the country.