We study the probability that all eigenvalues of the Laguerre unitary ensemble of n by n matrices are in (0, t), that is, the largest eigenvalue distribution. Associated with this probability, in the ladder operator...We study the probability that all eigenvalues of the Laguerre unitary ensemble of n by n matrices are in (0, t), that is, the largest eigenvalue distribution. Associated with this probability, in the ladder operator approach for orthogonal polynomials, there are recurrence coefficients, namely, an(t) and/3r, (t), as well as three auxiliary quantities, denoted by rn(t), Rn(t), σn(t). We establish the second order differential equations for both βn(t) and rn(t). By investigating the soft edge scaling limit when a - O(n) as n→ ∞ or a is finite, we derive a PH, the σ-form, and the asymptotic solution of the probability. In addition, we develop differential equations for orthogonal polynomials Pn (z) corresponding to the largest eigenvalue distribution of LUE and GUE with n finite or large. For large n, asymptotic formulas are given near the singular points of the ODE. Moreover, we are able to deduce a particular case of Chazy's equation for (t) = (t) with (t) satisfying the a-form of PIV or PV.展开更多
The optimal preconditioner and the superoptimal preconditioner were proposed in 1988 and 1992 respectively. They have been studied widely since then. Recently, Chen and Jin [6] extend the superoptimal preconditioner t...The optimal preconditioner and the superoptimal preconditioner were proposed in 1988 and 1992 respectively. They have been studied widely since then. Recently, Chen and Jin [6] extend the superoptimal preconditioner to a more general case by using the Moore-Penrose inverse. In this paper, we further study some useful properties of the optimal and the generalized superoptimal preconditioners. Several existing results are extended and new properties are developed.展开更多
A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we discuss the stability properties of T. Chan’s preconditioner cU (An) from the viewpoint of the...A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we discuss the stability properties of T. Chan’s preconditioner cU (An) from the viewpoint of the numerical range. An application in numerical ODEs is also given.展开更多
The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to impl...The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to implement and mathematically simple.In this paper,the commonly⁃used multiquadric RBF,conical RBF,and Gaussian RBF were applied to solve boundary value problems which are governed by partial differential equations with variable coefficients.Numerical results were provided to show the good performance of the three RBFs as numerical tools for a wide range of problems.It is shown that the conical RBF numerical results were more stable than the other two radial basis functions.From the comparison of three commonly⁃used RBFs,one may obtain the best numerical solutions for boundary value problems.展开更多
A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c...A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.展开更多
In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in ...In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.展开更多
We study the adaptive decomposition of functions in the monogenic Hardy spaces H2by higher order Szeg kernels under the framework of Clifford algebra and Clifford analysis,in the context of unit ball and half space.Th...We study the adaptive decomposition of functions in the monogenic Hardy spaces H2by higher order Szeg kernels under the framework of Clifford algebra and Clifford analysis,in the context of unit ball and half space.This is a sequel and a higher-dimensional generalization of our recent study on the complex Hardy spaces.展开更多
We prove that, under a semi-ampleness type assumption on the twisted canonical line bundle, the conical Kahler-Ricci flow on a minimal elliptic Kahler surface converges in the sense of currents to a generalized conica...We prove that, under a semi-ampleness type assumption on the twisted canonical line bundle, the conical Kahler-Ricci flow on a minimal elliptic Kahler surface converges in the sense of currents to a generalized conical Kahler-Einstein on its canonical model. Moreover, the convergence takes place smoothly outside the singular fibers and the chosen divisor.展开更多
Appealing to the Clifford analysis and matching pursuits, we study the adaptive decompositions of functions of several variables of finite energy under the dictionaries consisting of shifted Cauchy kernels. This is a ...Appealing to the Clifford analysis and matching pursuits, we study the adaptive decompositions of functions of several variables of finite energy under the dictionaries consisting of shifted Cauchy kernels. This is a realization of matching pursuits among shifted Cauchy kernels in higher-dimensional spaces. It offers a method to process signals in arbitrary dimensions.展开更多
The boundary knot method(BKM) is a boundary-type meshfree method. Only non-singular general solutions are used during the whole solution procedures. The effective condition number(ECN), which depends on the right-hand...The boundary knot method(BKM) is a boundary-type meshfree method. Only non-singular general solutions are used during the whole solution procedures. The effective condition number(ECN), which depends on the right-hand side vector of a linear system, is considered as an alternative criterion to the traditional condition number. In this paper, the effective condition number is used to help determine the position and distribution of the collocation points as well as the quasi-optimal collocation point numbers. During the solution process, we propose an NMN-search algorithm. Numerical examples show that the ECN is reliable to measure the feasibility of the BKM.展开更多
This paper deals with an alternative proof of Beurling-Lax theorem by adopting a constructive approach instead of the isomorphism technique which was used in the original proof.
We study the law of the iterated logarithm (LIL) for the maximum likelihood estimation of the parameters (as a convex optimization problem) in the generalized linear models with independent or weakly dependent (ρ-mix...We study the law of the iterated logarithm (LIL) for the maximum likelihood estimation of the parameters (as a convex optimization problem) in the generalized linear models with independent or weakly dependent (ρ-mixing) responses under mild conditions. The LIL is useful to derive the asymptotic bounds for the discrepancy between the empirical process of the log-likelihood function and the true log-likelihood. The strong consistency of some penalized likelihood-based model selection criteria can be shown as an application of the LIL. Under some regularity conditions, the model selection criterion will be helpful to select the simplest correct model almost surely when the penalty term increases with the model dimension, and the penalty term has an order higher than O(log log n) but lower than O(n). Simulation studies are implemented to verify the selection consistency of Bayesian information criterion.展开更多
In this paper,we analyze the spectra of the preconditioned matrices arising from discretized multi-dimensional Riesz spatial fractional diffusion equations.The finite difference method is employed to approximate the m...In this paper,we analyze the spectra of the preconditioned matrices arising from discretized multi-dimensional Riesz spatial fractional diffusion equations.The finite difference method is employed to approximate the multi-dimensional Riesz fractional derivatives,which generates symmetric positive definite ill-conditioned multi-level Toeplitz matrices.The preconditioned conjugate gradient method with a preconditioner based on the sine transform is employed to solve the resulting linear system.Theoretically,we prove that the spectra of the preconditioned matrices are uniformly bounded in the open interval(12,32)and thus the preconditioned conjugate gradient method converges linearly within an iteration number independent of the discretization step-size.Moreover,the proposed method can be extended to handle ill-conditioned multi-level Toeplitz matrices whose blocks are generated by functions with zeros of fractional order.Our theoretical results fill in a vacancy in the literature.Numerical examples are presented to show the convergence performance of the proposed preconditioner that is better than other preconditioners.展开更多
This paper presents a parallel algorithm for finding the smallest eigenvalue of a family of Hankel matrices that are ill-conditioned.Such matrices arise in random matrix theory and require the use of extremely high pr...This paper presents a parallel algorithm for finding the smallest eigenvalue of a family of Hankel matrices that are ill-conditioned.Such matrices arise in random matrix theory and require the use of extremely high precision arithmetic.Surprisingly,we find that a group of commonly-used approaches that are designed for high efficiency are actually less efficient than a direct approach for this class of matrices.We then develop a parallel implementation of the algorithm that takes into account the unusually high cost of individual arithmetic operations.Our approach combines message passing and shared memory,achieving near-perfect scalability and high tolerance for network latency.We are thus able to find solutions for much larger matrices than previously possible,with the potential for extending this work to systems with greater levels of parallelism.The contributions of this work are in three areas:determination that a direct algorithm based on the secant method is more effective when extreme fixed-point precision is required than are the algorithms more typically used in parallel floating-point computations;the particular mix of optimizations required for extreme precision large matrix operations on a modern multi-core cluster,and the numerical results themselves.展开更多
In this paper,a second-order fnite-diference scheme is investigated for time-dependent space fractional difusion equations with variable coefcients.In the presented scheme,the Crank-Nicolson temporal discretization an...In this paper,a second-order fnite-diference scheme is investigated for time-dependent space fractional difusion equations with variable coefcients.In the presented scheme,the Crank-Nicolson temporal discretization and a second-order weighted-and-shifted Grünwald-Letnikov spatial discretization are employed.Theoretically,the unconditional stability and the second-order convergence in time and space of the proposed scheme are established under some conditions on the variable coefcients.Moreover,a Toeplitz preconditioner is proposed for linear systems arising from the proposed scheme.The condition number of the preconditioned matrix is proven to be bounded by a constant independent of the discretization step-sizes,so that the Krylov subspace solver for the preconditioned linear systems converges linearly.Numerical results are reported to show the convergence rate and the efciency of the proposed scheme.展开更多
A compound option is simply an option on an option. In this short paper, by using a martingale technique, we obtain an analytical formula for pricing compound European call options. Numerical results are given to expl...A compound option is simply an option on an option. In this short paper, by using a martingale technique, we obtain an analytical formula for pricing compound European call options. Numerical results are given to explain some economic phenomenon.展开更多
In this paper,the authors introduce certain Herz type Hardy spaces with variable exponents and establish the characterizations of these spaces in terms of atomic and molecular decompositions. Using these decomposition...In this paper,the authors introduce certain Herz type Hardy spaces with variable exponents and establish the characterizations of these spaces in terms of atomic and molecular decompositions. Using these decompositions,the authors obtain the boundedness of some singular integral operators on the Herz type Hardy spaces with variable exponents.展开更多
In this work,we study a right time for an investor to stop the investment among multi-assets over a given investment horizon so as to obtainmaximum profit.We formulate it to a two-stage problem.The main problem is not...In this work,we study a right time for an investor to stop the investment among multi-assets over a given investment horizon so as to obtainmaximum profit.We formulate it to a two-stage problem.The main problem is not a standard optimal stopping problem due to the non-adapted term in the objective function,and we turn it to a standard one by stochastic analysis.The subproblem with control variable in the drift and volatility terms is solved first via stochastic control method.A numerical example is presented to illustrate the efficiency of the theoretical results.展开更多
An efficient option pricing method based on Fourier-cosine expansions was presented by Fang and Oosterlee for European options in 2008, and later, this method was also used by them to price early-exercise options and ...An efficient option pricing method based on Fourier-cosine expansions was presented by Fang and Oosterlee for European options in 2008, and later, this method was also used by them to price early-exercise options and barrier options respectively, in 2009. In this paper, this method is applied to price discretely American barrier options in which the monitored dates are many times more than the exercise dates. The corresponding algorithm is presented to practical option pricing. Numerical experiments show that this algorithm works very well and efficiently for different exponential Levy asset models.展开更多
基金The financial support of the Macao Science and Technology Development Fund under grant number FDCT 077/2012/A3, FDCT 130/2014/A3the University of Macao for generous support: MYRG 2014–00011 FST, MYRG 2014–00004 FST
文摘We study the probability that all eigenvalues of the Laguerre unitary ensemble of n by n matrices are in (0, t), that is, the largest eigenvalue distribution. Associated with this probability, in the ladder operator approach for orthogonal polynomials, there are recurrence coefficients, namely, an(t) and/3r, (t), as well as three auxiliary quantities, denoted by rn(t), Rn(t), σn(t). We establish the second order differential equations for both βn(t) and rn(t). By investigating the soft edge scaling limit when a - O(n) as n→ ∞ or a is finite, we derive a PH, the σ-form, and the asymptotic solution of the probability. In addition, we develop differential equations for orthogonal polynomials Pn (z) corresponding to the largest eigenvalue distribution of LUE and GUE with n finite or large. For large n, asymptotic formulas are given near the singular points of the ODE. Moreover, we are able to deduce a particular case of Chazy's equation for (t) = (t) with (t) satisfying the a-form of PIV or PV.
基金supported by the research grant UL020/08-Y2/MAT/ JXQ01/FST from University of Macao
文摘The optimal preconditioner and the superoptimal preconditioner were proposed in 1988 and 1992 respectively. They have been studied widely since then. Recently, Chen and Jin [6] extend the superoptimal preconditioner to a more general case by using the Moore-Penrose inverse. In this paper, we further study some useful properties of the optimal and the generalized superoptimal preconditioners. Several existing results are extended and new properties are developed.
基金The research is partially supported by the grant RG081/04-05S/JXQ/FST from University of Macao and thegrant 050/2005/A from FDCT.
文摘A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we discuss the stability properties of T. Chan’s preconditioner cU (An) from the viewpoint of the numerical range. An application in numerical ODEs is also given.
基金the Natural Science Foundation of Anhui Province(Grant No.1908085QA09)the University Natural Science Research Project of Anhui Province(KJ2019A0591).
文摘The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to implement and mathematically simple.In this paper,the commonly⁃used multiquadric RBF,conical RBF,and Gaussian RBF were applied to solve boundary value problems which are governed by partial differential equations with variable coefficients.Numerical results were provided to show the good performance of the three RBFs as numerical tools for a wide range of problems.It is shown that the conical RBF numerical results were more stable than the other two radial basis functions.From the comparison of three commonly⁃used RBFs,one may obtain the best numerical solutions for boundary value problems.
基金the National Natural Science Foundation of China(No.11701103)the Young Top-notch Talent Program of Guangdong Province of China(No.2017GC010379)+4 种基金the Natural Science Foundation of Guangdong Province of China(No.2022A1515012147)the Project of Science and Technology of Guangzhou of China(No.202102020704)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University of China(2021023)the Science and Technology Development Fund,Macao SAR(File No.0005/2019/A)the University of Macao of China(File Nos.MYRG2020-00035-FST,MYRG2018-00047-FST).
文摘A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.
基金the Scientific Research Fund of Beijing Normal University(Grant No.28704-111032105)the Start-up Research Fund from BNU-HKBU United International College(Grant No.R72021112)+2 种基金The research of Guanghui Hu was partially supported by the FDCT of the Macao S.A.R.(0082/2020/A2)the National Natural Science Foundation of China(Grant Nos.11922120,11871489)the Multi-Year Research Grant(2019-00154-FST)of University of Macao,and a Grant from Department of Science and Technology of Guangdong Province(2020B1212030001).
文摘In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.
基金supported by Macao FDCT 056/2010/A3 and research grant of the University of Macao(Grant No.UL017/08-Y4/MAT/QT01/FST)
文摘We study the adaptive decomposition of functions in the monogenic Hardy spaces H2by higher order Szeg kernels under the framework of Clifford algebra and Clifford analysis,in the context of unit ball and half space.This is a sequel and a higher-dimensional generalization of our recent study on the complex Hardy spaces.
基金supported by the Science and Technology Development Fund(Macao S.A.R.),Grant FDCT/016/2013/A1the Project MYRG2015-00235-FST of the University of Macao
文摘We prove that, under a semi-ampleness type assumption on the twisted canonical line bundle, the conical Kahler-Ricci flow on a minimal elliptic Kahler surface converges in the sense of currents to a generalized conical Kahler-Einstein on its canonical model. Moreover, the convergence takes place smoothly outside the singular fibers and the chosen divisor.
基金supported by Macao FDCT(098/2012/A3)Research Grant of the University of Macao(UL017/08-Y4/MAT/QT01/FST)+1 种基金National Natural Science Funds for Young Scholars(10901166)Sun Yat-sen University Operating Costs of Basic ResearchProjects to Cultivate Young Teachers(11lgpy99)
文摘Appealing to the Clifford analysis and matching pursuits, we study the adaptive decompositions of functions of several variables of finite energy under the dictionaries consisting of shifted Cauchy kernels. This is a realization of matching pursuits among shifted Cauchy kernels in higher-dimensional spaces. It offers a method to process signals in arbitrary dimensions.
基金Supported by the Natural Science Foundation of Anhui Province(1908085QA09)Higher Education Department of the Ministry of Education(201802358008)
文摘The boundary knot method(BKM) is a boundary-type meshfree method. Only non-singular general solutions are used during the whole solution procedures. The effective condition number(ECN), which depends on the right-hand side vector of a linear system, is considered as an alternative criterion to the traditional condition number. In this paper, the effective condition number is used to help determine the position and distribution of the collocation points as well as the quasi-optimal collocation point numbers. During the solution process, we propose an NMN-search algorithm. Numerical examples show that the ECN is reliable to measure the feasibility of the BKM.
基金supported by the Multi-Year Research Grant(No.MYRG115(Y1-L4)-FST13-QT)the Multi-Year Research Grant(No.MYRG116(Y1-L3)-FST13-QT)+1 种基金Macao Government(No.FDCT098/2012/A3)the Natural Science Foundation of Guangdong Province(No.S2011010004986)
文摘This paper deals with an alternative proof of Beurling-Lax theorem by adopting a constructive approach instead of the isomorphism technique which was used in the original proof.
文摘We study the law of the iterated logarithm (LIL) for the maximum likelihood estimation of the parameters (as a convex optimization problem) in the generalized linear models with independent or weakly dependent (ρ-mixing) responses under mild conditions. The LIL is useful to derive the asymptotic bounds for the discrepancy between the empirical process of the log-likelihood function and the true log-likelihood. The strong consistency of some penalized likelihood-based model selection criteria can be shown as an application of the LIL. Under some regularity conditions, the model selection criterion will be helpful to select the simplest correct model almost surely when the penalty term increases with the model dimension, and the penalty term has an order higher than O(log log n) but lower than O(n). Simulation studies are implemented to verify the selection consistency of Bayesian information criterion.
基金supported in part by research grants of the Science and Technology Development Fund,Macao SAR(No.0122/2020/A3)University of Macao(No.MYRG2020-00224-FST)+1 种基金the HKRGC GRF(No.12306616,12200317,12300218,12300519,17201020))China Postdoctoral Science Foundation(Grant 2020M682897).
文摘In this paper,we analyze the spectra of the preconditioned matrices arising from discretized multi-dimensional Riesz spatial fractional diffusion equations.The finite difference method is employed to approximate the multi-dimensional Riesz fractional derivatives,which generates symmetric positive definite ill-conditioned multi-level Toeplitz matrices.The preconditioned conjugate gradient method with a preconditioner based on the sine transform is employed to solve the resulting linear system.Theoretically,we prove that the spectra of the preconditioned matrices are uniformly bounded in the open interval(12,32)and thus the preconditioned conjugate gradient method converges linearly within an iteration number independent of the discretization step-size.Moreover,the proposed method can be extended to handle ill-conditioned multi-level Toeplitz matrices whose blocks are generated by functions with zeros of fractional order.Our theoretical results fill in a vacancy in the literature.Numerical examples are presented to show the convergence performance of the proposed preconditioner that is better than other preconditioners.
基金This work is supported in part by the National Science Foundation under Award No.CCF-1217590 and NFS grant#CNS-0619337 and by FDCT 077/2012/A3.Any opinions,findings conclusions or recommendations expressed here are the authors and do not necessarily reflect those of the sponsors.
文摘This paper presents a parallel algorithm for finding the smallest eigenvalue of a family of Hankel matrices that are ill-conditioned.Such matrices arise in random matrix theory and require the use of extremely high precision arithmetic.Surprisingly,we find that a group of commonly-used approaches that are designed for high efficiency are actually less efficient than a direct approach for this class of matrices.We then develop a parallel implementation of the algorithm that takes into account the unusually high cost of individual arithmetic operations.Our approach combines message passing and shared memory,achieving near-perfect scalability and high tolerance for network latency.We are thus able to find solutions for much larger matrices than previously possible,with the potential for extending this work to systems with greater levels of parallelism.The contributions of this work are in three areas:determination that a direct algorithm based on the secant method is more effective when extreme fixed-point precision is required than are the algorithms more typically used in parallel floating-point computations;the particular mix of optimizations required for extreme precision large matrix operations on a modern multi-core cluster,and the numerical results themselves.
基金This research was supported by research Grants,12306616,12200317,12300519,12300218 from HKRGC GRF,11801479 from NSFC,MYRG2018-00015-FST from University of Macao,and 0118/2018/A3 from FDCT of Macao,Macao Science and Technology Development Fund 0005/2019/A,050/2017/Athe Grant MYRG2017-00098-FST and MYRG2018-00047-FST from University of Macao.S。
文摘In this paper,a second-order fnite-diference scheme is investigated for time-dependent space fractional difusion equations with variable coefcients.In the presented scheme,the Crank-Nicolson temporal discretization and a second-order weighted-and-shifted Grünwald-Letnikov spatial discretization are employed.Theoretically,the unconditional stability and the second-order convergence in time and space of the proposed scheme are established under some conditions on the variable coefcients.Moreover,a Toeplitz preconditioner is proposed for linear systems arising from the proposed scheme.The condition number of the preconditioned matrix is proven to be bounded by a constant independent of the discretization step-sizes,so that the Krylov subspace solver for the preconditioned linear systems converges linearly.Numerical results are reported to show the convergence rate and the efciency of the proposed scheme.
基金The research is supported by the research grant RG081/04-05S/JXQ/FST from University of Macauthe grant 050/2005/A from FDCT
文摘A compound option is simply an option on an option. In this short paper, by using a martingale technique, we obtain an analytical formula for pricing compound European call options. Numerical results are given to explain some economic phenomenon.
基金partially supported by the NSF of China (Grants No.11361020)the Natural Science Foundation of Hainan Province (No.20151011)
文摘In this paper,the authors introduce certain Herz type Hardy spaces with variable exponents and establish the characterizations of these spaces in terms of atomic and molecular decompositions. Using these decompositions,the authors obtain the boundedness of some singular integral operators on the Herz type Hardy spaces with variable exponents.
基金This work is supported by the National Natural Science Foundation of China(Nos.11571124 and 11671158)the doctoral start-up Grant of Natural Science Foundation of Guangdong Province,China(No.2017A030310167)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University(No.201808)and Unversity of Macao(No.MYGR2018-00047-FST).
文摘In this work,we study a right time for an investor to stop the investment among multi-assets over a given investment horizon so as to obtainmaximum profit.We formulate it to a two-stage problem.The main problem is not a standard optimal stopping problem due to the non-adapted term in the objective function,and we turn it to a standard one by stochastic analysis.The subproblem with control variable in the drift and volatility terms is solved first via stochastic control method.A numerical example is presented to illustrate the efficiency of the theoretical results.
基金supported by the research grants (UL020/08-Y4/MAT/JXQ01/FST and MYRG136(Y1-L2)-FST11-DD) from University of Macao
文摘An efficient option pricing method based on Fourier-cosine expansions was presented by Fang and Oosterlee for European options in 2008, and later, this method was also used by them to price early-exercise options and barrier options respectively, in 2009. In this paper, this method is applied to price discretely American barrier options in which the monitored dates are many times more than the exercise dates. The corresponding algorithm is presented to practical option pricing. Numerical experiments show that this algorithm works very well and efficiently for different exponential Levy asset models.