We deal with a variational inequality describing the motion of incompressible fluids, whose viscous stress tensors belong to the subdifferential of a functional at the point given by the symmetric part of the velocity...We deal with a variational inequality describing the motion of incompressible fluids, whose viscous stress tensors belong to the subdifferential of a functional at the point given by the symmetric part of the velocity gradient, with a nonlocal friction condition on a part of the boundary obtained by a generalized mollification of the stresses. We establish an existence result of a solution to the nonlocal friction problem for this class of non-Newtonian flows. The result is based on the Faedo-Galerkin and Moreau Yosida methods, the duality theory of convex analysis and the Tychonov-Kakutani-Glicksberg fixed point theorem for multi-valued mappings in an appropriate functional space framework.展开更多
The purpose of this paper is to study the asymptotic behavior of the positive solutions of the problem tu- △u=au-b(x)up in Ω×R+,u(0)=u0,u(t )| Ω=0, as p→ +∞, where Ω is a bounded domain, and b(x...The purpose of this paper is to study the asymptotic behavior of the positive solutions of the problem tu- △u=au-b(x)up in Ω×R+,u(0)=u0,u(t )| Ω=0, as p→ +∞, where Ω is a bounded domain, and b(x) is a nonnegative function. The authors deduce that the limiting configuration solves a parabolic obstacle problem, and afterwards fully describe its long time behavior.展开更多
基金Partial support, from FCT research programme POCTI(Portugal/FEDER-EU).
文摘We deal with a variational inequality describing the motion of incompressible fluids, whose viscous stress tensors belong to the subdifferential of a functional at the point given by the symmetric part of the velocity gradient, with a nonlocal friction condition on a part of the boundary obtained by a generalized mollification of the stresses. We establish an existence result of a solution to the nonlocal friction problem for this class of non-Newtonian flows. The result is based on the Faedo-Galerkin and Moreau Yosida methods, the duality theory of convex analysis and the Tychonov-Kakutani-Glicksberg fixed point theorem for multi-valued mappings in an appropriate functional space framework.
基金Project supported by Fundaco para a Ciência e a Tecnologia (FCT) (No. PEst OE/MAT/UI0209/2011)supported by an FCT grant (No. SFRH/BPD/69314/201)
文摘The purpose of this paper is to study the asymptotic behavior of the positive solutions of the problem tu- △u=au-b(x)up in Ω×R+,u(0)=u0,u(t )| Ω=0, as p→ +∞, where Ω is a bounded domain, and b(x) is a nonnegative function. The authors deduce that the limiting configuration solves a parabolic obstacle problem, and afterwards fully describe its long time behavior.