With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b...With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b induced by passages of typhoons or tropical storms. This study compares characteristics of the three NIO events. Event 2008a was the strongest one among the three, and had the longest sustaining period (15 d), while events 2009a and 2009b sustained for only 4 and 8 d, respectively. The three events were distinguished by vertical energy distribution and phase propagation. As for the frequency shift of the NIO, event 2008a had a peak frequency lower than the local Coriolis frequency (red-shift), while events 2009a and 2009b showed blue-shift. The behavior of individual NIO event is jointly decided by the typhoon disturbance and the background ocean condition. Especially the background flow plays an important role by effects of advection and modulation. The results in this study provide observational evidence of variational NIO response to background flow field. As indicated by the distribution of vorticity and effective Coriolis frequency derived from numerical modeling, the large amplitude and elongated sustaining period of event 2008a were attributed to the waveguide effect of the background shear flow. This effect redistributed the NIO energy after the typhoon passage, absorbed incident waves and trapped energy in the area of the negative vorticity. While the background flow during events 2009a and 2009b did not have such effects due to the near-zero vorticity in the mooring area.展开更多
The South China Sea(SCS)is a large marginal sea connecting the Indian and Pacific oceans.Under the factors of monsoons,strait transport,and varied bathymetry,the SCS presents a three-layer structure and strong diapycn...The South China Sea(SCS)is a large marginal sea connecting the Indian and Pacific oceans.Under the factors of monsoons,strait transport,and varied bathymetry,the SCS presents a three-layer structure and strong diapycnal mixing which is far greater than that in the open ocean.Theoretical analysis and observations reveal that internal tides,internal solitary waves,and strong winds are the sources of the strong mixing in the northern SCS.A major consequence of the strong mixing is an active mid-deep circulation system.This system promotes exchange of water between the SCS and adjacent oceans,and also regulates the upper layer of wind-driven circulation,making the 3 dimensional SCS circulation clearly different from that in other tropical and subtropical marginal seas.The mass transport capacity of the mid-deep circulation has a substantial impact on marine sedimentation,the biogeochemical cycle,and other processes in the SCS.This paper summarizes the recent advances in middeep sea circulation dynamics of the SCS,and discusses the opportunities and challenges in this area.展开更多
基金The National Basic Research Program(973 Program) of China under contract Nos 2015CB954004 and 2009CB421208the National Natural Science Foundation of China under contract Nos 41276006U1405233 and 40976013the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences under contract No.KLOCAW1307
文摘With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b induced by passages of typhoons or tropical storms. This study compares characteristics of the three NIO events. Event 2008a was the strongest one among the three, and had the longest sustaining period (15 d), while events 2009a and 2009b sustained for only 4 and 8 d, respectively. The three events were distinguished by vertical energy distribution and phase propagation. As for the frequency shift of the NIO, event 2008a had a peak frequency lower than the local Coriolis frequency (red-shift), while events 2009a and 2009b showed blue-shift. The behavior of individual NIO event is jointly decided by the typhoon disturbance and the background ocean condition. Especially the background flow plays an important role by effects of advection and modulation. The results in this study provide observational evidence of variational NIO response to background flow field. As indicated by the distribution of vorticity and effective Coriolis frequency derived from numerical modeling, the large amplitude and elongated sustaining period of event 2008a were attributed to the waveguide effect of the background shear flow. This effect redistributed the NIO energy after the typhoon passage, absorbed incident waves and trapped energy in the area of the negative vorticity. While the background flow during events 2009a and 2009b did not have such effects due to the near-zero vorticity in the mooring area.
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFC1405701)the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDJ-SSW-DQC022)+1 种基金the National Natural Science Foundation of China (Grant Nos. 41521005, 41730535, 41776036, 41676001 & 41776026)the National Key Research and Development Program (Grant No. 2017YFA0603201)
文摘The South China Sea(SCS)is a large marginal sea connecting the Indian and Pacific oceans.Under the factors of monsoons,strait transport,and varied bathymetry,the SCS presents a three-layer structure and strong diapycnal mixing which is far greater than that in the open ocean.Theoretical analysis and observations reveal that internal tides,internal solitary waves,and strong winds are the sources of the strong mixing in the northern SCS.A major consequence of the strong mixing is an active mid-deep circulation system.This system promotes exchange of water between the SCS and adjacent oceans,and also regulates the upper layer of wind-driven circulation,making the 3 dimensional SCS circulation clearly different from that in other tropical and subtropical marginal seas.The mass transport capacity of the mid-deep circulation has a substantial impact on marine sedimentation,the biogeochemical cycle,and other processes in the SCS.This paper summarizes the recent advances in middeep sea circulation dynamics of the SCS,and discusses the opportunities and challenges in this area.