In research [1], the authors investigate the dynamic behaviors of a discrete ecological system. The period-double bifurcations and chaos are found in the system. But no strategy is proposed to control the chaos. It is...In research [1], the authors investigate the dynamic behaviors of a discrete ecological system. The period-double bifurcations and chaos are found in the system. But no strategy is proposed to control the chaos. It is well known that chaos control is the first step of utilizing chaos. In this paper, a controller is designed to stabilize the chaotic orbits and enable them to be an ideal target one. After that, numerical simulations are presented to show the correctness of theoretical analysis.展开更多
A hyperparasitic system with prolonged diapause for host is investigated. It is assumed that host prolonged diapause occur at larval stage, and parasitoid attack is limited to egg stage before the initiation of host d...A hyperparasitic system with prolonged diapause for host is investigated. It is assumed that host prolonged diapause occur at larval stage, and parasitoid attack is limited to egg stage before the initiation of host diapause. Such behavior has been reported for many ichneumons. Hyperparasite only attacks the parasitoids that parasitize the hosts. Hyperparasitic system is often used in biological control. The existence and stability of nonnegative fixed points are explored. Numerical simulations are carried out to explore the global dynamics of the system, which demonstrate appropriate prolonged diapause rate and appropriate intrinsic growth rate can stabilize the system. The reasons are explained according to the ecological perspective. Furthermore, many other complexities which include quasi-periodicity, period-doubling bifurcations leading to chaos, chaotic attractor, intermittent and supertransients are observed.展开更多
文摘In research [1], the authors investigate the dynamic behaviors of a discrete ecological system. The period-double bifurcations and chaos are found in the system. But no strategy is proposed to control the chaos. It is well known that chaos control is the first step of utilizing chaos. In this paper, a controller is designed to stabilize the chaotic orbits and enable them to be an ideal target one. After that, numerical simulations are presented to show the correctness of theoretical analysis.
文摘A hyperparasitic system with prolonged diapause for host is investigated. It is assumed that host prolonged diapause occur at larval stage, and parasitoid attack is limited to egg stage before the initiation of host diapause. Such behavior has been reported for many ichneumons. Hyperparasite only attacks the parasitoids that parasitize the hosts. Hyperparasitic system is often used in biological control. The existence and stability of nonnegative fixed points are explored. Numerical simulations are carried out to explore the global dynamics of the system, which demonstrate appropriate prolonged diapause rate and appropriate intrinsic growth rate can stabilize the system. The reasons are explained according to the ecological perspective. Furthermore, many other complexities which include quasi-periodicity, period-doubling bifurcations leading to chaos, chaotic attractor, intermittent and supertransients are observed.