期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Partition of unity interpolation on multivariate convex domains
1
作者 R.Cavoretto A.DeRossi E.Perracchione 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2015年第4期1-17,共17页
In this paper,we present an algorithm for multivariate interpolation of scattered data sets lying in convex domainsΩ⊆R^(N),for any N≥2.To organize the points in a multidimensional space,we build a kd-tree space-parti... In this paper,we present an algorithm for multivariate interpolation of scattered data sets lying in convex domainsΩ⊆R^(N),for any N≥2.To organize the points in a multidimensional space,we build a kd-tree space-partitioning data structure,which is used to efficiently apply a partition of unity interpolant.This global scheme is combined with local radial basis function(RBF)approximants and compactly supported weight functions.A detailed description of the algorithm for convex domains and a complexity analysis of the computational procedures are also considered.Several numerical experiments show the performances of the interpolation algorithm on various sets of Halton data points contained inΩ,whereΩcan be any convex domain,like a 2D polygon or a 3D polyhedron.Finally,an application to topographical data contained in a pentagonal domain is presented. 展开更多
关键词 Meshfree approximation multivariate algorithms partition of unity methods scattered data.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部