期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
On the Bloch Constant for K-Quasiconformal Mappings in Several Complex Variables 被引量:3
1
作者 J. Y. GAMALIEL 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2001年第2期237-242,共6页
We study the Bloch constant for K-quasiconformal holomorphic mappings of the unit ball B of C<sup>n</sup> into C<sup>n</sup>. The final result we prove in this paper is: If f is a K-quasiconfor... We study the Bloch constant for K-quasiconformal holomorphic mappings of the unit ball B of C<sup>n</sup> into C<sup>n</sup>. The final result we prove in this paper is: If f is a K-quasiconformal holomorphic mapping of B into C<sup>n</sup> such that det(f’(0))=1, then f(B) contains a schlicht ball of radius at least (C<sub>n</sub>K)<sup>1-n</sup> integral from n=0 to 1((1+t)<sup>n-1</sup>/(1-t)<sup>2</sup> exp{-(n+1)t/(1-t)}dt, where C<sub>n</sub>】1 is a constant depending on n only, and C<sub>n</sub>→10<sup>1/2</sup> as n→∞. 展开更多
关键词 K-quasiconformal mapping Bloch constant
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部