期刊文献+
共找到119篇文章
< 1 2 6 >
每页显示 20 50 100
Multilevel carbon architecture of subnanoscopic silicon for fast‐charging high‐energy‐density lithium‐ion batteries 被引量:1
1
作者 Meisheng Han Yongbiao Mu +2 位作者 Lei Wei Lin Zeng Tianshou Zhao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期256-268,共13页
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p... Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C. 展开更多
关键词 fast charging high energy densities lithium‐ion batteries multilevel carbon architecture subnanoscopic silicon anode
下载PDF
Characterization and Analysis of Inconel 718 Alloy Ground at Different Speeds
2
作者 Hao Liu Huili Han +2 位作者 Qinghong Jiang Minglin He Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期137-149,共13页
Inconel 718(IN718)alloy is widely applied to fabricate high temperature resistant or corrosion resistant parts due to its excellent mechanical performance.However,the machining of IN718 alloy is difficult as it may ca... Inconel 718(IN718)alloy is widely applied to fabricate high temperature resistant or corrosion resistant parts due to its excellent mechanical performance.However,the machining of IN718 alloy is difficult as it may cause serious tool wear and poor surface quality(SQ)of the workpiece.In this work,grinding experiments on IN718 alloy at different speeds were conducted by using a CBN grinding wheel.The relationship between grinding speed,SQ and subsurface damage(SSD)was well studied.With increasing grinding speed,surface roughness decreased,and SQ was greatly improved.Meanwhile,the microhardness of the grinding surface declined as the grinding speed increased.The SSD depth was almost unchanged when the grinding speed was lower than 15 m/s,then it decreased with higher grinding speeds.It was attributed to the mechanical-thermal synergistic effect in the grinding process.The results indicated that increasing grinding speed can effectively improve the SQ and reduce the SSD of IN718 alloy.The conclusion in the work may also provide insight into processing other hard-to-machining materials. 展开更多
关键词 Surface integrity Grinding speed IN718 alloy Precision machining CBN grinding wheel
下载PDF
Improving fatigue properties of normal direction ultrasonic vibration assisted face grinding Inconel 718 by regulating machined surface integrity
3
作者 Nianwei Xu Renke Kang +4 位作者 Bi Zhang Yuan Zhang Chenxu Wang Yan Bao Zhigang Dong 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期458-475,共18页
Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),... Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),and microhardness)after machining processes.Normal-direction ultrasonic vibration-assisted face grinding(ND-UVAFG)has advantages in improving the machinability of Inconel 718,but there is a competitive relationship between higher compressiveσ_(res)and higher surface roughness R_(a)in affecting fatigue strength.The lack of a quantitative relationship between multiple SI indexes and fatigue strength makes theindeterminacy of a regulatory strategy for improving fatigue properties.In this work,a model of fatigue strength(σ_f)_(sur)considering multiple SI indexes was developed.Then,high-cycle fatigue tests were carried out on Inconel 718 samples with different SI characteristics,and the influence of ND-UVAFG process parameters on SI was analyzed.Based on SI indexes data,the(σ_f)_(sur)distribution in the grinding surface layer for ND-UVAFG Inconel 718 samples was determined using the developed model,and then the fatigue crack initiation(FCI)sites were furtherpredicted.The predicted FCI sites corresponded well with the experimental results,therebyverifying this model.A strategy for improving the fatigue life was proposed in this work,which was to transfer the fatigue source from the machined surface to the bulk material by controlling the SI indexes.Finally,a critical condition of SI indexes that FCI sites appeared on the surface or in bulk material was given by fitting the predicted results.According to the critical condition,an SI field where FCI sites appeared in the bulk material could be obtained.In this field,thefatigue life of Inconel 718 samples could be improved by approximately 140%. 展开更多
关键词 surface integrity fatigue strength Inconel 718 ultrasonic assisted grinding
下载PDF
In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes
4
作者 Jing Sun Qinping Jian +2 位作者 Bin Liu Pengzhu Lin Tianshou Zhao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期158-166,共9页
Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrain... Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrained by critical challenges,including dendrites,water-induced hydrogen evolution,and passivation.In this study,a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method.The ultrathin interphase layer(~1μm)is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1Å,which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions,contributing to a uniform and highly reversible zinc deposition.With the shielding of the interphase layer,an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm−2 and~700 h at 1 mA cm^(−2),far exceeding that of the bare zinc anodes(250 and 70 h).Furthermore,as a proof-of-concept demonstration,the full cell paired with MnO_(2) cathode demonstrates improved rate performances and stable cycling(1200 cycles at 1 A g−1).This work provides fresh insights into interphase design to promote the performance of zinc metal anodes. 展开更多
关键词 2D MOF DESOLVATION INTERPHASE ion sieve zinc anode
下载PDF
Optimizing 3d spin polarization of CoOOH by in situ Mo doping for efficient oxygen evolution reaction
5
作者 Zhichao Jia Yang Yuan +6 位作者 Yanxing Zhang Xiang Lyu Chenhong Liu Xiaoli Yang Zhengyu Bai Haijiang Wang Lin Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期236-244,共9页
Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will ben... Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will benefit their quick transition to the next catalysts.Herein,Mo-doped CoOOH was designed as a high-performance model electrocatalyst with durability for 20 h at 10 mAcm−2.Additionally,it had an overpotential of 260 mV(glassy carbon)or 215 mV(nickel foam),which was 78 mV lower than that of IrO_(2)(338 mV).In situ,Raman spectroscopy revealed the transformation process of CoOOH.Calculations using the density functional theory showed that during OER,doped Mo increased the spin-up density of states and shrank the spin-down bandgap of the 3d orbits in the reconstructed CoOOH under the electrochemical activation process,which simultaneously optimized the adsorption and electron conduction of oxygen-related intermediates on Co sites and lowered the OER overpotentials.Our research provides new insights into the methodical planning of the creation of transition-metal oxyhydroxide OER catalysts. 展开更多
关键词 ELECTROCATALYST in situ Raman Mo-doped CoOOH oxygen evolution reaction
下载PDF
Tailoring mechanical properties of PμSL 3D-printed structures via size effect 被引量:4
6
作者 Wenqiang Zhang Haitao Ye +5 位作者 Xiaobin Feng Wenzhao Zhou Ke Cao Maoyuan Li Sufeng Fan Yang Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期261-268,共8页
Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables th... Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables the production of customized 3D microlattices with feature sizes down to several microns.However,the mechanical properties of as-printed polymers were not systemically studied at the relevant length scales,especially when the feature sizes step into micron/sub-micron level,limiting its reliable performance prediction in micro/nanolattice and other metamaterial applications.In this work,we demonstrate that PμSL-printed microfibers could become stronger and significantly more ductile with reduced size ranging from 20μm to 60μm,showing an obvious size-dependent mechanical behavior,in which the size decreases to 20μm with a fracture strain up to~100%and fracture strength up to~100 MPa.Such size effect enables the tailoring of the material strength and stiffness of PμSL-printed microlattices over a broad range,allowing to fabricate the microlattice metamaterials with desired/tunable mechanical properties for various structural and functional applications. 展开更多
关键词 3D printing projection micro-stereolithography(PμSL) size effect MICROFIBER mechanical properties microlattice metamaterial
下载PDF
Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition 被引量:8
7
作者 Chuan Guo Gan Li +8 位作者 Sheng Li Xiaogang Hu Hongxing Lu Xinggang Li Zhen Xu Yuhan Chen Qingqing Li Jian Lu Qiang Zhu 《Nano Materials Science》 EI CAS CSCD 2023年第1期53-77,共25页
The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in hig... The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components. 展开更多
关键词 Additive manufacturing Ni-based superalloys Residual stress Mechanisms of crack formation Methods of crack inhibition
下载PDF
Monolayer MoS_(2)Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries 被引量:2
8
作者 Meisheng Han Yongbiao Mu +3 位作者 Jincong Guo Lei Wei Lin Zeng Tianshou Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期126-142,共17页
High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS... High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries. 展开更多
关键词 Monolayer MoS_(2) Interlayer electrostatic repulsion Co atoms doping Surface-capacitance effect Fast-charging lithiumion batteries
下载PDF
Mechanical properties of Cu matrix composite fabricated by extrusion process
9
作者 Ji-Hun PAK Gwi-Nam KIM +3 位作者 Sung-Gu HWANG Beom-Su KIM Jung-Pil NOH Sun-Chul HUH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2679-2686,共8页
Carbon nanotube (CNT)was applied in various fields for itssuperior electrical, mechanical and thermal characteristics. After composites were fabricated by extrusion processusing ball-milledCu-CNT powders, mechanical... Carbon nanotube (CNT)was applied in various fields for itssuperior electrical, mechanical and thermal characteristics. After composites were fabricated by extrusion processusing ball-milledCu-CNT powders, mechanicalpropertiesofCu-CNT composites according to CNT fraction were reviewed. CNT (1%, 5% and 10%),Cu (d=100 nm), zirconia balls (90 g) and ethanol (20mL) were mixed and dispersed for5h at a speed of 500 r/minusing a planetary ball mill. A billet (d=50 mm, length=100 mm) was made with Cu, and the composite powderswerefilled up into billet using the uni-axial press. In the extrusion process, after the billet was heated at 880℃for1h, specimens were produced in the shape of a round bar using the billet by applying a load of 200 t. The composite powdersweremeasured for particle size byparticlesize distributionequipment. Then the specimen surface fabricated by extrusion was observed by SEM. Mechanicalpropertiesmeasured by the indentation equipment increased with increasing CNT content. The yield strength, tensile strength and hardness of theCu–CNTs composites canbeobviously improved. 展开更多
关键词 EXTRUSION MILLING INDENTATION MATRIX mechanical properties MICROSTRUCTURE
下载PDF
Mechanical and Rheological Properties of Bamboo Pulp Fiber Reinforced High Density Polyethylene Composites:Influence of Nano CaCO_(3)Treatment and Manufacturing Process with Different Pressure Ratings
10
作者 Cuicui Wang Xin Wei +3 位作者 Lee MSmith Ge Wang Shuangbao Zhang Haitao Cheng 《Journal of Renewable Materials》 SCIE EI 2022年第7期1829-1844,共16页
In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by ... In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites. 展开更多
关键词 Nano CaCO_(3) bamboo pulp fiber composites manufacturing process mechanical properties rheological properties
下载PDF
Surface Integrity of Inconel 738LC Parts Manufactured by Selective Laser Melting Followed by High-speed Milling
11
作者 Guanhui Ren Sai Guo Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期65-79,共15页
This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study emp... This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study employs ultradepth three-dimensional microscopy,laser scanning confocal microscopy,scanning electron microscopy,electron backscatter diffractometry,and energy dispersive spectroscopy to characterize the evolution of material microstructure,work hardening,residual stress coupling,and anisotropic effect of the building direction on surface integrity of the samples.The results show that SLM/HSM hybrid manufacturing can be an effective method to obtain better surface quality with a thinner machining metamorphic layer.High-speed machining is adopted to reduce cutting force and suppress machining heat,which is an effective way to produce better surface mechanical properties during the SLM/HSM hybrid manufacturing process.In general,high-speed milling of the SLM-built Inconel 738LC samples offers better surface integrity,compared to simplex additive manufacturing or casting. 展开更多
关键词 Surface integrity Inconel 738LC Selective laser melting High-speed milling
下载PDF
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:2
12
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
Laser-Constructing 3D Copper Current Collector with Crystalline Orientation Selectivity for Stable Lithium Metal Batteries
13
作者 Hui Li Gang Wang +3 位作者 Jin Hu Jun Li Jiaxu Huang Shaolin Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期129-139,共11页
The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines ... The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper(Cu)current collectors.Specifically,this approach enhances the prevalence of Cu(100)facets within the grooves,effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition.Unlike approaches that modify the entire surface of collectors,our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics.The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42%over 350 cycles at 1 mA cm^(−2).The symmetric cell can cycle stably for 1600 h at 0.5 mA cm^(−2).Furthermore,when integrated with LiFePO4 cathodes,the full-cell configuration demonstrates outstanding capacity retention of 92.39%after 400 cycles at a 1C discharge rate.This study introduces a novel technique for fabricating selective lithiophilic three-dimensional(3D)Cu current collectors,thereby enhancing the performance of Li metal batteries.The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures. 展开更多
关键词 copper current collector heat treatment laser processing lithium metal battery selective crystalline orientation
下载PDF
Digital light processing based multimaterial 3D printing:challenges,solutions and perspectives
14
作者 Jianxiang Cheng Shouyi Yu +1 位作者 Rong Wang Qi Ge 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期151-174,共24页
Multimaterial(MM)3D printing shows great potential for application in metamaterials,flexible electronics,biomedical devices and robots,since it can seamlessly integrate distinctive materials into one printed structure... Multimaterial(MM)3D printing shows great potential for application in metamaterials,flexible electronics,biomedical devices and robots,since it can seamlessly integrate distinctive materials into one printed structure.Among numerous MM 3D printing technologies,digital light processing(DLP)MM 3D printing is compatible with a wide range of materials from hydrogels to ceramics,and can print MM 3D structures with high resolution,high complexity and fast speed.This paper introduces the fundamental mechanisms of DLP 3D printing,and reviews the recent advances of DLP MM 3D printing technologies with emphasis on material switching methods and material contamination issues.It also summarizes a number of typical examples of DLP MM 3D printing systems developed in the past decade,and introduces their system structures,working principles,material switching methods,residual resin removal methods,printing steps,as well as the representative structures and applications.Finally,we provide perspectives on the directions of the further development of DLP MM 3D printing technology. 展开更多
关键词 multimaterial 3D printing digital lightprocessing multimaterial 3Dstructures
下载PDF
Two-photon polymerization-based 4D printing and its applications
15
作者 Bingcong Jian Honggeng Li +3 位作者 Xiangnan He Rong Wang Hui Ying Yang Qi Ge 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期1-25,共25页
Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes a... Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes and excels in fabricating intricate 3D micro/nanostructures with exceptional resolution.The concept of 4D entails the fabrication of structures utilizing smart materials capable of undergoing shape,property,or functional changes in response to external stimuli over time.The integration of TPP and 4D printing introduces the possibility of producing responsive structures with micro/nanoscale accuracy,thereby enhancing the capabilities and potential applications of both technologies.This paper comprehensively reviews TPP-based 4D printing technology and its diverse applications.First,the working principles of TPP and its recent advancements are introduced.Second,the optional4D printing materials suitable for fabrication with TPP are discussed.Finally,this review paper highlights several noteworthy applications of TPP-based 4D printing,including domains such as biomedical microrobots,bioinspired microactuators,autonomous mobile microrobots,transformable devices and robots,as well as anti-counterfeiting microdevices.In conclusion,this paper provides valuable insights into the current status and future prospects of TPP-based4D printing technology,thereby serving as a guide for researchers and practitioners. 展开更多
关键词 two-photonpolymerization 4D printing nano/micro fabrication MICROROBOT
下载PDF
Macroporous Directed and Interconnected Carbon Architectures Endow Amorphous Silicon Nanodots as Low‑Strain and Fast‑Charging Anode for Lithium‑Ion Batteries
16
作者 Zhenwei Li Meisheng Han +2 位作者 Peilun Yu Junsheng Lin Jie Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期333-351,共19页
Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by unifor... Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by uniformly dis-persing amorphous Si nanodots(SiNDs)in carbon nanospheres(SiNDs/C)that are welded on the wall of the macroporous carbon framework(MPCF)by vertical graphene(VG),labeled as MPCF@VG@SiNDs/C.The high dispersity and amor-phous features of ultrasmall SiNDs(~0.7 nm),the flexible and directed electron/Li+transport channels of VG,and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites,rapid Li+transport path,and unique low-strain property during Li+storage.Consequently,the MPCF@VG@SiNDs/C exhibits high cycle stability(1301.4 mAh g^(-1) at 1 A g^(-1) after 1000 cycles without apparent decay)and high rate capacity(910.3 mAh g^(-1),20 A g^(-1))in half cells based on industrial electrode standards.The assembled pouch full cell delivers a high energy density(1694.0 Wh L^(-1);602.8 Wh kg^(-1))and an excellent fast-charging capability(498.5 Wh kg^(-1),charging for 16.8 min at 3 C).This study opens new possibilities for preparing advanced silicon-carbon com-posite anodes for practical applications. 展开更多
关键词 Amorphous Si nanodots Low-strain Fast-charging Lithium-ion batteries
下载PDF
Methods for Detection of Subsurface Damage:A Review 被引量:16
17
作者 Jing-fei Yin Qian Bai Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第3期23-36,共14页
Subsurface damage is easily induced in machining of hard and brittle materials because of their particular mechani?cal and physical properties. It is detrimental to the strength,performance and lifetime of a machined ... Subsurface damage is easily induced in machining of hard and brittle materials because of their particular mechani?cal and physical properties. It is detrimental to the strength,performance and lifetime of a machined part. To manu?facture a high quality part,it is necessary to detect and remove the machining induced subsurface damage by the subsequent processes. However,subsurface damage is often covered with a smearing layer generated in a machining process,it is rather di cult to directly observe and detect by optical microscopy. An e cient detection of subsur?face damage directly leads to quality improvement and time saving for machining of hard and brittle materials. This paper presents a review of the methods for detection of subsurface damage,both destructive and non?destructive. Although more reliable,destructive methods are typically time?consuming and confined to local damage infor?mation. Non?destructive methods usually su er from uncertainty factors,but may provide global information on subsurface damage distribution. These methods are promising because they can provide a capacity of rapid scan and detection of subsurface damage in spatial distribution. 展开更多
关键词 Subsurface damage Hard and brittle material Taper polishing MEASUREMENT Laser scattering
下载PDF
Numerical simulation on trapping efficiency of steady filtration process in diesel particulate filter and its experimental verification 被引量:8
18
作者 张桂菊 鄂加强 +3 位作者 左青松 龚金科 左威 袁文华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4456-4466,共11页
Taking wall-flow diesel particulate filter(DPF) as the research objective and separately assuming its filtering wall to be composed of numerous spherical or cylindrical elements, two different mathematical models of s... Taking wall-flow diesel particulate filter(DPF) as the research objective and separately assuming its filtering wall to be composed of numerous spherical or cylindrical elements, two different mathematical models of steady filtration for wall-flow diesel particulate filter were developed and verified by experiments as well as numerically solved. Furthermore, the effects of the macroand micro-structural parameters of filtering wall and exhaust-flow characteristic parameters on trapping efficiency were also analyzed and researched. The results show that: 1) The two developed mathematical models are consistent with the prediction of variation of particulate size; the influence of various factors on the steady trapping efficiency is exactly the same. Compared to model 2, model 1 is more suitable for describing the steady filtration process of wall-flow diesel particulate filter; 2)The major influencing factors on steady trapping efficiency of wall-flow diesel particulate filter are the macro-and micro-structural parameters of filtering wall; and the secondary influencing factors are the exhaust-flow characteristic parameters and macro-structural parameters of filter; 3)The steady trapping efficiency will be improved by increasing filter body volume, pore density as well as wall thickness and by decreasing exhaust-flow, but effects will be weakened when particulate size exceeds a certain critical value; 4) The steady trapping efficiency will be significantly improved by increasing exhaust-flow temperature and filtering wall thickness, but effects will be also weakened when particulate size exceeds a certain critical value; 5) The steady trapping efficiency will approximately linearly increase with reducing porosity, micropore aperture and pore width. 展开更多
关键词 wall-flow DIESEL PARTICULATE filter STEADY filtrat
下载PDF
Design and analysis of logarithmic spiral type sprag one-way clutch 被引量:7
19
作者 刘志辉 严宏志 曹煜明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4597-4607,共11页
A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes... A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes advantage of Hunt-Crossley contact impact theory to calculate the contact forces between sprags and races,and it can be used for optimization of design and comparison with other types of sprag clutches.A good deal of analysis shows that the parameters of the steady windup angle,the steady contact force,the natural frequency and natural cycle of clutch have nothing to do with the initial velocity of outer race,while the parameters of the maximum transient windup angle,the maximum transient impact force and the steady engagement time increase linearly in the mode of engaging operation of clutch.It is also shown that the strut angle has great influence on the dynamic engagement performance of clutch.The parameters of the steady windup angle,the maximum transient windup angle,the steady engaging time,the steady contact force,the maximum transient impact force and the natural cycle of clutch decrease linearly nearly with the inner strut angle,while the natural frequency of the system increases linearly with the inner strut angle. 展开更多
关键词 mathematical model logarithmic spiral one-way clutch hunt-crossley windup angle steady contact force transient impact force
下载PDF
Semi-solid processing of aluminum and magnesium alloys:Status,opportunity,and challenge in China 被引量:9
20
作者 Gan LI Wen-ying QU +8 位作者 Min LUO Le CHENG Chuan GUO Xing-gang LI Zhen XU Xiao-gang HU Da-quan LI Hong-xing LU Qiang ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3255-3280,共26页
Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with ex... Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China. 展开更多
关键词 semi-solid processing aluminum alloys magnesium alloys slurry preparation numerical modeling performance industrial applications
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部