期刊文献+
共找到8,756篇文章
< 1 2 250 >
每页显示 20 50 100
DYNAMIC STABILITY OF SPINDLE BLADE IN RING SPINNING Zhou Bingrong(Department of Mechanical Engineering)
1
作者 周炳荣 《Journal of Donghua University(English Edition)》 EI CAS 1989年第Z1期55-61,共7页
It is discussed that a tangential force T induces a self-excited vibration in the motion ofspindle blades of a ring spinning frame.Depending on the relative magnitude of the tangentialforce compared with the tangentia... It is discussed that a tangential force T induces a self-excited vibration in the motion ofspindle blades of a ring spinning frame.Depending on the relative magnitude of the tangentialforce compared with the tangential damping force the motion of blade is either stable orunstable.The chief factors causing the self-excited vibration can also be traced from the charac-ter of the experimental locus. 展开更多
关键词 dynamic stability ring SPINNING SPINDLES vibration self EXCITATION stablity theory of motion
下载PDF
Spontaneous Orientation Polarization of Anisotropic Equivalent Dipoles Harnessed by Entropy Engineering for Ultra‑Thin Electromagnetic Wave Absorber
2
作者 Honghan Wang Xinyu Xiao +5 位作者 Shangru Zhai Chuang Xue Guangping Zheng Deqing Zhang Renchao Che Junye Cheng 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期424-438,共15页
The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engin... The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes.Electron migration modes within HEAs as manipulated by the electronegativity,valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles.Herein,enlightened by skin-like effect,a reformative carbothermal shock method using carbonized cellulose paper(CCP)as carbon supporter is used to preserve the oxygencontaining functional groups(O·)of carbonized cellulose fibers(CCF).Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·.Meanwhile,the electron migration mode of switchable electronrich sites promotes the orientation polarization of anisotropic equivalent dipoles.By virtue of the reinforcement strategy,CCP/HEAs composite prepared by 35%molar ratio of Mn element(CCP/HEAs-Mn_(2.15))achieves efficient electromagnetic wave(EMW)absorption of−51.35 dB at an ultra-thin thickness of 1.03 mm.The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations,which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices(e.g.,ultra-wideband bandpass filter). 展开更多
关键词 High-entropy alloys Carbothermal shock Switchable electron migration modes Emblematic shell-core heterointerfaces Ultra-thin thickness
下载PDF
Influence of layer thickness on formation quality,microstructure,mechanical properties,and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion 被引量:2
3
作者 Bangzhao Yin Jinge Liu +7 位作者 Bo Peng Mengran Zhou Bingchuan Liu Xiaolin Ma Caimei Wang Peng Wen Yun Tian Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1367-1385,共19页
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not... Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases. 展开更多
关键词 Magnesium alloy WE43 Laser powder bed fusion Layer thickness Process optimization
下载PDF
Spark Plasma Sintering of Mg-based Alloys:Microstructure,Mechanical Properties,Corrosion Behavior,and Tribological Performance 被引量:1
4
作者 Alessandro M.Ralls Mohammadreza Daroonparvar Pradeep L.Menezes 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期405-442,共38页
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co... Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing. 展开更多
关键词 Spark plasma sintering Magnesium alloys NANOCRYSTALLINE TRIBOLOGY Mechanical properties Corrosion
下载PDF
Mechanical and damping performances of TPMS lattice metamaterials fabricated by laser powder bed fusion 被引量:1
5
作者 Yan-peng Wei Huai-qian Li +7 位作者 Jing-jing Han Ying-chun Ma Hao-ran Zhou Jing-chang Cheng Jian Shi Zhi-quan Miao Bo Yu Feng Lin 《China Foundry》 SCIE EI CAS CSCD 2024年第4期327-333,共7页
Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,it... Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity. 展开更多
关键词 lattice metamaterials TPMS energy absorption DAMPING laser powder bed fusion
下载PDF
Influence of B4C and ZrB2 reinforcements on microstructural,mechanical and wear behaviour of AA 2014 aluminium matrix hybrid composites
6
作者 Ramesh Babu R Rajendran C +1 位作者 Saiyathibrahim A Rajkumar Velu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期242-254,共13页
Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research ... Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research effort aims to develop novel hybrid composites based on AA 2014 alloy through the use of liquid metallurgy stir casting to reinforce dual ceramic particles of Zirconium Diboride(ZrB_(2))and Boron Carbide(B4C).The weight percentage(wt%)of ZrB_(2) was varied(0,5,10,and 15),while a constant 5 wt%of B4C was maintained during this fabrication.The as-cast samples have been assessed using an Optical Microscope(OM)and a Scanning Electron Microscope(SEM)with Energy Dispersive Spectroscopy(EDS).The properties such as hardness,tensile strength,and wear characteristics of stir cast specimens were assessed to examine the impact of varying weight percentages of reinforcements in AA 2014 alloy.In particular,dry sliding wear behaviour was evaluated considering varied loads using a pin-on-disc tribotester.As the weight%of ZrB_(2) grew and B4C was incorporated,hybrid composites showed higher hardness,tensile strength,and wear resistance.Notably,the incorporation of a cumulative reinforcement consisting of 15 wt%ZrB_(2) and 5 wt%B4C resulted in a significant 31.86%increase in hardness and a 44.1%increase in tensile strength compared to AA 2014 alloy.In addition,it has been detected that wear resistance of hybrid composite pin(containing 20 wt%cumulative reinforcement)is higher than that of other stir cast wear test pins during the whole range of applied loads.Fractured surfaces of tensile specimens showed ductile fracture in the AA 2014 matrix and mixed mode for hybrid composites.Worn surfaces obtained employing higher applied load indicated abrasive wear with little plastic deformation for hybrid composites and dominant adhesive wear for matrix alloy.Hence,the superior mechanical and tribological performance of hybrid composites can be attributed to dual reinforcement particles being dispersed well and the effective transmission of load at this specific composition. 展开更多
关键词 AA 2014 alloy Stir casting Hybrid composite HARDNESS Tensile strength Specific wear rate
下载PDF
Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning
7
作者 Xingzi Yang Wei Gao +1 位作者 Xiaodu Wang Xiaowei Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1299-1313,共15页
The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performa... The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process. 展开更多
关键词 Bioinspired nanocomposite computational model machine learning finite element material interface
下载PDF
Accuracy comparison and improvement for state of health estimation of lithium-ion battery based on random partial recharges and feature engineering
8
作者 Xingjun Li Dan Yu +1 位作者 Søren Byg Vilsen Daniel Ioan Stroe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期591-604,共14页
State of health(SOH)estimation of e-mobilities operated in real and dynamic conditions is essential and challenging.Most of existing estimations are based on a fixed constant current charging and discharging aging pro... State of health(SOH)estimation of e-mobilities operated in real and dynamic conditions is essential and challenging.Most of existing estimations are based on a fixed constant current charging and discharging aging profiles,which overlooked the fact that the charging and discharging profiles are random and not complete in real application.This work investigates the influence of feature engineering on the accuracy of different machine learning(ML)-based SOH estimations acting on different recharging sub-profiles where a realistic battery mission profile is considered.Fifteen features were extracted from the battery partial recharging profiles,considering different factors such as starting voltage values,charge amount,and charging sliding windows.Then,features were selected based on a feature selection pipeline consisting of filtering and supervised ML-based subset selection.Multiple linear regression(MLR),Gaussian process regression(GPR),and support vector regression(SVR)were applied to estimate SOH,and root mean square error(RMSE)was used to evaluate and compare the estimation performance.The results showed that the feature selection pipeline can improve SOH estimation accuracy by 55.05%,2.57%,and 2.82%for MLR,GPR and SVR respectively.It was demonstrated that the estimation based on partial charging profiles with lower starting voltage,large charge,and large sliding window size is more likely to achieve higher accuracy.This work hopes to give some insights into the supervised ML-based feature engineering acting on random partial recharges on SOH estimation performance and tries to fill the gap of effective SOH estimation between theoretical study and real dynamic application. 展开更多
关键词 Feature engineering Dynamic forklift aging profile State of health comparison Machine learning Lithium-ion batteries
下载PDF
Data-driven modeling on anisotropic mechanical behavior of brain tissue with internal pressure
9
作者 Zhiyuan Tang Yu Wang +3 位作者 Khalil I.Elkhodary Zefeng Yu Shan Tang Dan Peng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期55-65,共11页
Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function... Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors. 展开更多
关键词 Data driven Constitutive law ANISOTROPY Brain tissue Internal pressure
下载PDF
Microstructure and mechanical behavior of AXM Mg alloy systems—A review
10
作者 N.Thanabal R.Silambarasan +2 位作者 P.Seenuvasaperumal Dudekula Althaf Basha A.Elayaperumal 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2624-2646,共23页
Automobiles are the inevitable mode of transportation.However,increasing fuel prices and carbon dioxide emissions are posing a serious threat to automobile users and the environment.Thus,the development of new lightwe... Automobiles are the inevitable mode of transportation.However,increasing fuel prices and carbon dioxide emissions are posing a serious threat to automobile users and the environment.Thus,the development of new lightweight materials has been a key area of research.Magnesium-based commercial alloys(AZ and ZK series alloys)are the lightest among all structural metals.However,there is still a question about the replacement of Aluminum-based alloys due to HCP crystal structure.In this connection,Mg-Al-Ca-Mn(AXM)Mg alloy can be a choice as an alternative to the existing Mg-based commercial alloys for structural applications.It contains(Al,Mg)_(2)Ca,Al_(2)Ca,Mg_(2)Ca,and Al_(8)Mn_(5)as the secondary phases,contributing to the microstructural refinement and property enhancement.However,the formation of those precipitates depends on the amount of Al,Ca,and Mn,especially,the Ca/Al ratio.In addition,the secondary processes influence the grain refinement and property enhancement of texture modifications.Hence,this review article focuses on elaborating on the significance of the Ca/Al ratio for the precipitate formation,secondary process,and texture modifications.The co-segregation behavior of other micro-alloying elements like Cerium,Lanthanum,and Zinc in AXM Mg alloy systems has also been discussed for property enhancement. 展开更多
关键词 AXM Mg alloy ROLLING EXTRUSION TEXTURE
下载PDF
Data-Driven Healthcare:The Role of Computational Methods in Medical Innovation
11
作者 Hariharasakthisudhan Ponnarengan Sivakumar Rajendran +2 位作者 Vikas Khalkar Gunapriya Devarajan Logesh Kamaraj 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期1-48,共48页
The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical r... The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable. 展开更多
关键词 Computational models biomedical engineering BIOINFORMATICS machine learning wearable technology
下载PDF
Mechanical and Electrical Properties of Some Sn-Zn Based Lead-Free Quinary Alloys
12
作者 Shihab Uddin Md. Abdul Gafur +1 位作者 Suraya Sabrin Soshi Mohammad Obaidur Rahman 《Materials Sciences and Applications》 2024年第7期213-227,共15页
Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ ... Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy. 展开更多
关键词 Lead-Free Solder Strain Rate Ultimate Tensile Strength DUCTILITY Electrical Conductivity
下载PDF
Influence of Solvent onto Chemical Extraction of America-Type Coconut (Coco nucifera L.) Fbers: Analysis of Physicochemical, Mechanical and Morphological Properties
13
作者 Delphine Korgai Gandai Zara Haman +4 位作者 Djoda Pagore Frederic Memtine Ndong Augustin Abdourhamane Nsangou Niraka Blaise Hambate Gomdje Valery 《Journal of Textile Science and Technology》 2024年第3期64-81,共18页
In this study, the natural fibers from Coconuts of the species Coco nucifera L. were Chemically extracted in different solvents such as sodium hydroxide (SH), acetone (AC) and sodium hydroxide-acetone (SHA) for their ... In this study, the natural fibers from Coconuts of the species Coco nucifera L. were Chemically extracted in different solvents such as sodium hydroxide (SH), acetone (AC) and sodium hydroxide-acetone (SHA) for their applications in the textile industries. Structural, morphological and physico-mechanical characterizations such as X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanned electron microscopy (SEM), measurements of density, Young’s modulus, water absorption rate and humidity were evaluated. The XRD and FTIR results show that Coco nucifera L. fibers contains type I cellulose. Mechanical characterizations were also carried out. These results show that by varying the different solvents used, the physico-chemical, mechanical and morphological properties of the fibers change, which implies that the solvent has an influence on the properties of these fibers. The fibers extracted by the sodium hydroxide-acetone mixture have a linear density of 1.636, the percentage of water absorption is 62.428%, the percentage of moisture absorption 9.605% compared to other values in the literature shows that this solvent mixture improves the properties of coconut fibers which contain type I cellulose. The tensile stress is 0.013 GPa, the percentage strain is 49.836% and the Young’s modulus is 0.114 GPa as well as the percentage elongation show that these fibers are elasto-plastic. The values obtained mean that these fibers are suitable for use in textiles. 展开更多
关键词 Chemical Extraction Cellulose Coco nucifera L. Fibers ELASTO-PLASTIC Textiles
下载PDF
Assessing Mechanical Properties of Natural Fibre Reinforced Composites for Engineering Applications
14
作者 O. D. Samuel S. Agbo T. A. Adekanye 《Journal of Minerals and Materials Characterization and Engineering》 2012年第8期780-784,共5页
Mechanical properties of ukam, banana, sisal, coconut, hemp and e-glass fibre reinforced laminates were evaluated to assess the possibility of using it as new material in engineering applications. Samples were fabrica... Mechanical properties of ukam, banana, sisal, coconut, hemp and e-glass fibre reinforced laminates were evaluated to assess the possibility of using it as new material in engineering applications. Samples were fabricated by the hand lay-up process (30:70 fibre and matrix ratio by weight) and the properties evaluated using the INSTRON material testing system. The mechanical properties were tested and showed that glass laminate has the maximum tensile strength of 63 MPa, bending strength of 0.5 MPa, compressive strength of 37.75 MPa and the impact strength of 17.82 J/m2. The ukam plant fibre laminate has the maximum tensile strength of 16.25 MPa and the impact strength of 9.8J/m among the natural fibres;the sisal laminate has the maximum compressive strength of 42 MPa and maximum bending strength of 0.0036 MPa among the natural fibres. Results indicated that natural fibres are of interest for low-cost engineering applications and can compete with artificial glass fibres (E-glass fibre) when a high stiffness per unit weight is desirable. Results also indicated that future research towards significant improvements in tensile and impact strength of these types of composites should focus on the optimisation of fibre strength rather than interfacial bond strength. 展开更多
关键词 REINFORCED LAMINATES HAND LAY-UP Method E-GLASS FIBRE REINFORCED Natural FIBRE
下载PDF
Development of an In-Situ Composite Doped Coating for Corrosion Protection and Mechanical Properties Enhancements in Process Engineering
15
作者 Oluwasegun T. Joshua Ojo S. I. Fayomi Enejoh T. Omeje 《Journal of Minerals and Materials Characterization and Engineering》 2019年第4期171-179,共9页
Process engineering has been seen as one of the vital tools for improving surface coating phenomena for advance application. In an attempt to improve the mechanical, physical and chemical performance of the steel stru... Process engineering has been seen as one of the vital tools for improving surface coating phenomena for advance application. In an attempt to improve the mechanical, physical and chemical performance of the steel structure for ex-tended application, Zn-CeO2/ZnCeO2-Al2SiO5 thin film composite was fabri-cated on mild steel using direct electrolytic route. Process variation of Al2SiO5 particulate ranges from 5 to 15 g per litre. The embedded coating was charac-terized using Scanning electron microscope (SEM). The chemical effect of the developed alloy was characterized through linear potentiodynamic polarization experiment and the performances of samples were examined in simulated 3.5% sodium chloride. The microhardness verification study proves that there is sig-nificant improvement in hardness trend. The tribological assessment indicated that there is less plastic deformation as a result of the counter body. In all, Zn-CeO2/Zn-CeO2-Al2SiO5 exhibits good stability, with agglomeration and great built up of crystal at the interface. 展开更多
关键词 COATING MILD Steel Corrosion HARDNESS
下载PDF
Foundation of Graduate Study in Mechanical EngineeringmAdvanced Dynamics
16
作者 Shuh Jing Ying 《Journal of Energy and Power Engineering》 2016年第4期231-236,共6页
Dynamics is the foundation of undergraduate study in mechanical engineering. If you are good in dynamics, you will be good on all other courses. Advanced dynamics is the foundation for graduate study. The author taugh... Dynamics is the foundation of undergraduate study in mechanical engineering. If you are good in dynamics, you will be good on all other courses. Advanced dynamics is the foundation for graduate study. The author taught advanced dynamics for more than ten years, this is the author's observation. Why it is so? Because the course of advanced dynamics covers usually many mathematical fundamentals such as vectors, tensors, matrices and rotation operators; principles and applications in dynamics from particle dynamics to rigid body motion, from small oscillation to vibration of systems with multiple degrees of freedom, the author's course covers also special relativity theory. They are very innovative. And they set the foundation for the study of all the graduate courses. Science is always in progress, dynamics is in the same form. Just say a few examples to illustrate the frontier of dynamics: missile shooting missile is important in our defense, the author covered this as an example in particle dynamics. Space ship travels from Earth to Mars is another example. Several rotational motions with different axes can be combined to one through the use of rotation operator. This is important because it usually can save time. All these examples will be included in this paper in some details. 展开更多
关键词 Advanced dynamics graduate study mechanical engineering.
下载PDF
Microstructures and mechanical properties of extruded 2024 aluminum alloy reinforced by FeNiCrCoAl_3 particles 被引量:8
17
作者 王志伟 原燕波 +2 位作者 郑瑞晓 Kei AMEYAMA 马朝利 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2366-2373,共8页
Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The mic... Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The microstructures of the milled powder and bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties of the extruded alloy were examined by mechanical testing machine. The results show that after BM, the particle size and microstructures of the mixed alloy powder change obviously. After 48 h BM, the average size of mixed powder is about 30 nm, and then after hot extrusion, the average size of grains reaches about 70 rim. The compressive strength of the extruded alloy reaches 710 MPa under certain conditions of milling time and composition. As a result of the identification of the nano-/micro-strueture-property relationship of the samples, such high strength is attributed mainly to the nanocrystalline grains of a(Al) and nanoscaled FeNiCrCoAl3 particles, and the fine secondary phase of Al2Cu and Fe-rich phases. 展开更多
关键词 aluminium alloys FeNiCrCoAl3 reinforced particles high entropy alloy ball milling hot extrusion nano-precipitates
下载PDF
Effect of finish-rolling conditions on mechanical properties and texture characteristics of AM50 alloy sheet
18
作者 丁汉林 张义伟 Shigeharu KAMADO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2761-2766,共6页
The conventional hot rolling of AM50 alloy at different roll temperatures and speeds was performed to investigate the effects of finish-rolling conditions on the mechanical properties and texture of rolled sheet. The ... The conventional hot rolling of AM50 alloy at different roll temperatures and speeds was performed to investigate the effects of finish-rolling conditions on the mechanical properties and texture of rolled sheet. The better combination between strength(ultimate tensile strength: 295 MPa; yield strength: 224 MPa) and ductility(22.9%) can be obtained for the AM50 sheet rolled at the roll temperature of 200 °C with the roll speed of 5 m/min. The yield stress depends strongly on roll temperature, while the texture intensity in rolled sheets is more sensitive to roll speed during hot rolling. Increasing rolling temperature or roll speed can improve the mechanical anisotropy of AM50 rolled sheets. 展开更多
关键词 AM50 alloy hot rolling mechanical anisotropy TEXTURE
下载PDF
Effect of mechanical alloying and sintering process on microstructure and mechanical properties of Al-Ni-Y-Co-La alloy 被引量:4
19
作者 原燕波 王志伟 +3 位作者 郑瑞晓 郝晓宁 Kei AMEYAMA 马朝利 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2251-2257,共7页
Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering... Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering (SPS) under different process conditions. The microstructure and morphology of the powder and consolidated bulk sample were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is shown that amorphous phase appears when ball milling time is more than 100 h, and the bulk sample consolidated by SPS can maintain amorphous/ nanocrystalline microstructure but has lower relative density. A compressive strength of 650 MPa of Al86Ni7Y4.5Co1La1.5 nanostructured samples is achieved by vacuum hot extrusion (VHE). 展开更多
关键词 mechanical alloying aluminum alloy nanocrystalline alloy AMORPHOUS spark plasma sintering hot extrusion
下载PDF
Effect of mechanical alloying time and rotation speed on evolution of CNTs/Al-2024 composite powders 被引量:3
20
作者 郝晓宁 张海平 +3 位作者 郑瑞晓 张艺镡 Kei AMEYAMA 马朝利 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2380-2386,共7页
Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditio... Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditions. Microstructure evolution and mechanical properties of the milled powder and consolidated bulk materials were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and mechanical test. The effect of CNTs concentration and milling time on the microstructure of the CNTs/Al-2024 composites was studied. Based on the structural observation, the formation behavior of nanostructure in ball milled powder was discussed. The results show that the increment in the milling time and ration speed, for a fixed amount of CNTs, causes a reduction of the particle size of powders resulting from MM. The finest particle size was obtained after 15 h of milling. Moreover, the composite had an increase in tensile strength due to the small amount of CNTs addition. 展开更多
关键词 CNTS Al matrix composite mechanical milling MICROSTRUCTURE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部