Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not...Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.展开更多
Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,it...Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.展开更多
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ...Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.展开更多
Magnesium alloys are ideal lightweight materials;however,their applications are extremely limited due to their low strength,poor ductility,and weak corrosion resistance.In the present study,a friction stir processing(...Magnesium alloys are ideal lightweight materials;however,their applications are extremely limited due to their low strength,poor ductility,and weak corrosion resistance.In the present study,a friction stir processing(FSP)treatment was employed to optimize the mechanical properties and corrosion resistance of an as-cast Mg-5Zn alloy.The average grain size of the Mg-5Zn alloy was refined from 133.8μm to1.3μm as a result of FSP.Along different directions,FSP exhibited the enhancement effects on different mechanical properties.Furthermore,according to the potentiodynamic polarization results,the corrosion current density at the free-corrosion potential of the FSPed sample,was 4.1×10^(-6)A/cm^(2)in 3.5 wt.%Na Cl aqueous solution,which was significantly lower than that of the as-cast sample.Electrochemical impedance spectroscopy revealed that the polarization impedance,Rp,of the FSPed sample was 1534Ω/cm^(2)in 3.5 wt.%NaCl aqueous solution,which was 71.4%greater than that of the as-cast sample.The corrosion morphology of the FSPed sample in 3.5 wt.%NaCl aqueous solution exhibited largely uniform corrosion,rather than severe localized corrosion characteristics,which further reduced the corrosion depth on the basis of reducing the corrosion current density.The results presented herein indicate that FSP is a viable technique for simultaneously improving the mechanical properties and corrosion resistance of the as-cast Mg-5Zn alloy.展开更多
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a...For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.展开更多
Electron beam–directed energy deposition(EB–DED)has emerged as a promising wire-based metal additive manufacturing technique.However,the effects of EBs on pendant droplets at wire tips have not yet been determined.T...Electron beam–directed energy deposition(EB–DED)has emerged as a promising wire-based metal additive manufacturing technique.However,the effects of EBs on pendant droplets at wire tips have not yet been determined.The aim of this study is to enhance the understanding of this action by analyzing the mechanism of droplet oscillation.The pendant droplet oscillation phenomenon hinders the stable transfer of droplets to the molten pool and limits the feasibility of manufacturing complex lattice structures by EB–DED.Hence,another aim of this study is to create an oscillation suppression method.An escalating asymmetric amplitude is the main characteristic of droplet oscillation.The primary oscillationinducing force is the recoil force generated from the EB-acted local surface of the droplet.The physical mechanism of this force is the rapid increase and uneven distribution of the local surface temperature caused by the partial action of the EB.The prerequisites for droplet oscillation include vacuum conditions,high power densities,and bypass wire feeding processes.The proposed EB–dynamic surrounding melting(DSM)method can be applied to conveniently and effectively suppress oscillations,enable the accurate transfer of droplets to the molten pool,and achieve stable processes for preparing the strut elements of lattice structures.Lowering the temperature and improving the uniformity of its distribution are the mechanisms of oscillation suppression in EB–DSM.In this study,the physical basis for interpreting the mechanism by which EBs act on droplets and the technical basis for using EB–DED to prepare complex lattice structure parts are provided.展开更多
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
The most widely adopted method for diagnosing respiratory infectious diseases is to conduct polymerase chain reaction(PCR)assays on patients’respiratory specimens,which are collected through either nasal or oropharyn...The most widely adopted method for diagnosing respiratory infectious diseases is to conduct polymerase chain reaction(PCR)assays on patients’respiratory specimens,which are collected through either nasal or oropharyngeal swabs.The manual swab sampling process poses a high risk to the examiner and may cause false-negative results owing to improper sampling.In this paper,we propose a pneumatically actuated soft end-effector specifically designed to achieve all of the tasks involved in swab sampling.The soft end-effector utilizes circumferential instability to ensure grasping stability,and exhibits several key properties,including high load-to-weight ratio,error tolerance,and variable swab-tip stiffness,leading to successful automatic robotic oropharyngeal swab sampling,from loosening and tightening the transport medium tube cap,holding the swab,and conducting sampling,to snapping off the swab tail and sterilizing itself.Using an industrial collaborative robotic arm,we integrated the soft end-effector,force sensor,camera,lights,and remote-control stick,and developed a robotic oropharyngeal swab sampling system.Using this swab sampling system,we conducted oropharyngeal swab-sampling tests on 20 volunteers.Our Digital PCR assay results(RNase P RNA gene absolute copy numbers for the samples)revealed that our system successfully collected sufficient numbers of cells from the pharyngeal wall for respiratory disease diagnosis.In summary,we have developed a pharyngeal swab-sampling system based on an“enveloping”soft actuator,studied the sampling process,and imple-mented whole-process robotic oropharyngeal swab-sampling.展开更多
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co...Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.展开更多
Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular mat...Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular maturation make vascularized organotypic tissue construction difficult,greatly limiting its use in tissue engineering and regenerative medicine. To address these limitations, recent studies have adopted pre-vascularized microtissue assembly for the rapid generation of functional tissue analogs with dense vascular networks and high cell density. In this article, we summarize the development of module assembly-based vascularized organotypic tissue construction and its application in tissue repair and regeneration, organ-scale tissue biomanufacturing, as well as advanced tissue modeling.展开更多
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples...Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.展开更多
The effects of pouring temperature,vibration frequency,and the number of curves in a serpentine channel,on themicrostructure and mechanical properties of Al-30%Si alloy processed by rheo-diecasting(RDC)were investigat...The effects of pouring temperature,vibration frequency,and the number of curves in a serpentine channel,on themicrostructure and mechanical properties of Al-30%Si alloy processed by rheo-diecasting(RDC)were investigated.The semisolidAl-30%Si alloy slurry was prepared by vibration serpentine channel pouring(VSCP)process in the RDC process.The results showthat the pouring temperature,the vibration frequency,and the number of the curves strongly affect the microstructure and mechanicalproperties of Al-30%Si alloy.Under experimental conditions of a pouring temperature of850°C,a twelve-curve copper channel anda vibration frequency of80Hz,the primary Si grains are refined into fine compact grains with average grain size of about24.6μm inthe RDC samples assisted with VSCP.Moreover,the ultimate tensile strength(UTS),elongation and hardness of the RDC sample are296MPa,0.87%and HB155,respectively.It is concluded that the VSCP process can effectively refine the primary Si grains.Therefinement of primary Si grains is the major cause for the improvement of the mechanical properties of the RDC sample.展开更多
The effect of different tempering temperatures on the microstructure and mechanical properties of airquenched high boron white cast iron was studied.The results indicate that the high boron white cast iron comprises d...The effect of different tempering temperatures on the microstructure and mechanical properties of airquenched high boron white cast iron was studied.The results indicate that the high boron white cast iron comprises dendritic matrix and inter-dendritic M 2 B boride;and the matrix comprises martensite and pearlite.After quenching in the air,the matrix is changed into lath martensite;but only 1-μm-size second phase exists in the matrix.After tempering,another second phase of several tens of nanometers is found in the matrix,and the size and quantity increase with an increase in tempering temperature.The two kinds of second precipitation phase with different sizes in the matrix have the same chemical formula,but their forming stages are different.The precipitation phase with larger size forms during the austenitizing process,while the precipitation phase with smaller size forms during the tempering process.When tempered at different temperatures after quenching,the hardness decreases with an increase in the tempering temperature,but it increases a little at 450 ℃ due to the precipitation strengthening effect of the second phase,and it decreases greatly due to the martensite decomposition above 450 ℃.The impact toughness increases a little when tempered below 300 ℃,but it then decreases continuously owing to the increase in size and quantity of the secondary precipitate above 300 ℃.Considered comprehensively,the optimum tempering temperature is suggested at 300 ℃ to obtain a good combination of hardness and toughness.展开更多
The additive manufacturing of continuous fiber composites has the advantage of a high-precision and efficient forming process,which can realize the lightweight and integrated manufacturing of complex structures.Howeve...The additive manufacturing of continuous fiber composites has the advantage of a high-precision and efficient forming process,which can realize the lightweight and integrated manufacturing of complex structures.However,many void defects exist between layers in the printing process of additive manufacturing;consequently,the bonding performance between layers is poor.The bonding neck is considered a key parameter for representing the quality of interfacial bonding.In this study,the formation mechanism of the bonding neck was comprehensively analyzed.First,the influence of the nozzle and basement temperatures on the printing performance and bonding neck size was measured.Second,CT scanning was used to realize the quantitative characterization of bonding neck parameters,and the reason behind the deviation of actual measurements from theoretical calculations was analyzed.When the nozzle temperature increased from 180 to 220℃,CT measurement showed that the bonding neck diameter increased from 0.29 to 0.34 mm,and the cross-sectional porosity reduced from 5.48%to 3.22%.Finally,the fracture mechanism was studied,and the influence of the interfacial bonding quality on the destruction process of the materials was determined.In conclusion,this study can assist in optimizing the process parameters,which improves the precision of the printing parts and performance between the layers.展开更多
The QP980-DP980 dissimilar steel joints were fabricated by fiber laser welding.The weld zone(WZ)was fully martensitic structure,and heat-affected zone(HAZ)contained newly-formed martensite and partially tempered marte...The QP980-DP980 dissimilar steel joints were fabricated by fiber laser welding.The weld zone(WZ)was fully martensitic structure,and heat-affected zone(HAZ)contained newly-formed martensite and partially tempered martensite(TM)in both steels.The supercritical HAZ of the QP980 side had higher microhardness(~549.5 Hv)than that of the WZ due to the finer martensite.A softened zone was present in HAZ of QP980 and DP980,the dropped microhardness of softened zone of the QP980 and DP980 wasΔ21.8 Hv andΔ40.9 Hv,respectively.Dislocation walls and slip bands were likely formed at the grain boundaries with the increase of strain,leading to the formation of low angle grain boundaries(LAGBs).Dislocation accumulation more easily occurred in the LAGBs than that of the HAGBs,which led to significant dislocation interaction and formation of cracks.The electron back-scattered diffraction(EBSD)results showed the fraction of LAGBs in sub-critical HAZ of DP980 side was the highest under different deformation conditions during tensile testing,resulting in the failure of joints located at the sub-critical HAZ of DP980 side.The QP980-DP980 dissimilar steel joints presented higher elongation(~11.21%)and ultimate tensile strength(~1011.53 MPa)than that of DP980-DP980 similar steel joints,because during the tensile process of the QP980-DP980 dissimilar steel joint(~8.2%and 991.38 MPa),the strain concentration firstly occurred on the excellent QP980 BM.Moreover,Erichsen cupping tests showed that the dissimilar welded joints had the lowest Erichsen value(~5.92 mm)and the peak punch force(~28.4 kN)due to the presence of large amount of brittle martensite in WZ and inhomogeneous deformation.展开更多
Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical propert...Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical properties of these wall structures. Due to the higher vacancy binding energy of Cd, Cd-vacancy clusters are formed in the aging process and provide a large number of nucleation locations for θ′ phases. The higher diffusion coefficient of the Cd-vacancy cluster and the lower interfacial energy of θ′ phase lead to the formation of dense θ′ phases in the heat-treated α(Al). According to the strengthening model, after adding Cd in ER2319 welding wires, the yield strength increases by 43 MPa in the building direction of the heat-treated wall structures.展开更多
The low temperature ion sulphuration-an effective surface engineering technique for reducing friction and wear of rubbing-pairs was introduced. It involves the principle of ion sulphuration process, microstructure of ...The low temperature ion sulphuration-an effective surface engineering technique for reducing friction and wear of rubbing-pairs was introduced. It involves the principle of ion sulphuration process, microstructure of FeS film on 1045 steel, tribological properties of FeS film on steels, microstructions and tribological properties of MoS2 and nano-FeS/MoS2 multi-layered films, as well as their applications.展开更多
In this study, the effect of the processing route using a friction stir processing(FSP) method on the microstructure and mechanical behavior of a Mg-9Li-1Zn alloy was systematically investigated. In the FSP method, th...In this study, the effect of the processing route using a friction stir processing(FSP) method on the microstructure and mechanical behavior of a Mg-9Li-1Zn alloy was systematically investigated. In the FSP method, the odd-numbered(1st and 3rd) process directions and even-numbered(2nd and 4th) passes were alternated to distribute the strain throughout the whole processed zone uniformly. Consequently, the processed zone had a much more uniform microstructure and hardness distribution than the processed zone obtained using the conventional FSP method. Using this method, the grain size of a Mg-9Li-1Zn sheet alloy was refined from ~31 μm to ~0.21 μm with uniformly distributedα and β phases. The processed alloy exhibited a high strength-ductility synergy with an ultimate tensile strength(UTS) of 220.1 MPa and total elongation of 70.0% at a strain rate of 10^(-3)s^(-1), overwhelmingly higher than those of the base metal, 155.6 MPa in UTS and 36.0%in elongation. The in-situ SEM-DIC analysis and TEM observation demonstrated that such an outstanding ductility with moderate strength is caused by grain boundary sliding, the dominant deformation mechanism of the ultra-fine-grained sample after FSP. The processing route with reverse processing direction was proven to be efficient in producing the ultrafine grain size microstructure and improving the mechanical properties of superlight Mg-9Li-1Zn alloy.展开更多
Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure f...Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.展开更多
As a new type of lightweight structure,metallic lattice structure has higher stiffness and strength to weight ratio.To freely obtain 316L lattice structures with designed cell structure and adjustable porosity,additiv...As a new type of lightweight structure,metallic lattice structure has higher stiffness and strength to weight ratio.To freely obtain 316L lattice structures with designed cell structure and adjustable porosity,additive manufacturing combined with investment casting was conducted to fabricate the 316L lattice structures with Kelvin cell.The compression simulation of 316L lattice structures with different porosities was carried out by using the finite element method.The numerical simulation results were verified by compression experiment,and the simulated results were consistent with the compression tests.The compressive mechanical properties of 316L lattice structures are directly related to porosity and independent of strut diameters.The 316L lattice structures with Kelvin cell have a smooth stress-strain curve and obvious plastic platform,and the hump stress-strain curves are avoided.展开更多
基金funded by the National Key Research and Development Program of China(2018YFE0104200)National Natural Science Foundation of China(51875310,52175274,82172065)Tsinghua Precision Medicine Foundation.
文摘Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.
基金financially supported by the Liaoning Province Applied Fundamental Research Program(No.2023JH2/101700039)Liaoning Province Natural Science Foundation(No.2023-MSLH-328)。
文摘Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.
基金financially supported by the National Science and Technology Major Project of China(No.J2019-VI-0004-0117)。
文摘Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.
基金financially supported by the National Natural Science Foundation of China(grant no.51705280 and 52035005)。
文摘Magnesium alloys are ideal lightweight materials;however,their applications are extremely limited due to their low strength,poor ductility,and weak corrosion resistance.In the present study,a friction stir processing(FSP)treatment was employed to optimize the mechanical properties and corrosion resistance of an as-cast Mg-5Zn alloy.The average grain size of the Mg-5Zn alloy was refined from 133.8μm to1.3μm as a result of FSP.Along different directions,FSP exhibited the enhancement effects on different mechanical properties.Furthermore,according to the potentiodynamic polarization results,the corrosion current density at the free-corrosion potential of the FSPed sample,was 4.1×10^(-6)A/cm^(2)in 3.5 wt.%Na Cl aqueous solution,which was significantly lower than that of the as-cast sample.Electrochemical impedance spectroscopy revealed that the polarization impedance,Rp,of the FSPed sample was 1534Ω/cm^(2)in 3.5 wt.%NaCl aqueous solution,which was 71.4%greater than that of the as-cast sample.The corrosion morphology of the FSPed sample in 3.5 wt.%NaCl aqueous solution exhibited largely uniform corrosion,rather than severe localized corrosion characteristics,which further reduced the corrosion depth on the basis of reducing the corrosion current density.The results presented herein indicate that FSP is a viable technique for simultaneously improving the mechanical properties and corrosion resistance of the as-cast Mg-5Zn alloy.
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology Collaborative Project between CNNC and Tsinghua University Project of China(Grant No.ZHJTIZYFGWD20201).
文摘For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.
基金supported by the National Natural Science Foundation of China(52375349)the Beijing Municipal Natural Science Foundation(3222008).
文摘Electron beam–directed energy deposition(EB–DED)has emerged as a promising wire-based metal additive manufacturing technique.However,the effects of EBs on pendant droplets at wire tips have not yet been determined.The aim of this study is to enhance the understanding of this action by analyzing the mechanism of droplet oscillation.The pendant droplet oscillation phenomenon hinders the stable transfer of droplets to the molten pool and limits the feasibility of manufacturing complex lattice structures by EB–DED.Hence,another aim of this study is to create an oscillation suppression method.An escalating asymmetric amplitude is the main characteristic of droplet oscillation.The primary oscillationinducing force is the recoil force generated from the EB-acted local surface of the droplet.The physical mechanism of this force is the rapid increase and uneven distribution of the local surface temperature caused by the partial action of the EB.The prerequisites for droplet oscillation include vacuum conditions,high power densities,and bypass wire feeding processes.The proposed EB–dynamic surrounding melting(DSM)method can be applied to conveniently and effectively suppress oscillations,enable the accurate transfer of droplets to the molten pool,and achieve stable processes for preparing the strut elements of lattice structures.Lowering the temperature and improving the uniformity of its distribution are the mechanisms of oscillation suppression in EB–DSM.In this study,the physical basis for interpreting the mechanism by which EBs act on droplets and the technical basis for using EB–DED to prepare complex lattice structure parts are provided.
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
基金Supported by National Natural Science Foundation of China(Grant Nos.52222502,92048302,and 51975306)Research Project of State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV201904)Emergency Research Project for COVID-19 from Institute for Precision Medicine of Tsinghua University of China.
文摘The most widely adopted method for diagnosing respiratory infectious diseases is to conduct polymerase chain reaction(PCR)assays on patients’respiratory specimens,which are collected through either nasal or oropharyngeal swabs.The manual swab sampling process poses a high risk to the examiner and may cause false-negative results owing to improper sampling.In this paper,we propose a pneumatically actuated soft end-effector specifically designed to achieve all of the tasks involved in swab sampling.The soft end-effector utilizes circumferential instability to ensure grasping stability,and exhibits several key properties,including high load-to-weight ratio,error tolerance,and variable swab-tip stiffness,leading to successful automatic robotic oropharyngeal swab sampling,from loosening and tightening the transport medium tube cap,holding the swab,and conducting sampling,to snapping off the swab tail and sterilizing itself.Using an industrial collaborative robotic arm,we integrated the soft end-effector,force sensor,camera,lights,and remote-control stick,and developed a robotic oropharyngeal swab sampling system.Using this swab sampling system,we conducted oropharyngeal swab-sampling tests on 20 volunteers.Our Digital PCR assay results(RNase P RNA gene absolute copy numbers for the samples)revealed that our system successfully collected sufficient numbers of cells from the pharyngeal wall for respiratory disease diagnosis.In summary,we have developed a pharyngeal swab-sampling system based on an“enveloping”soft actuator,studied the sampling process,and imple-mented whole-process robotic oropharyngeal swab-sampling.
基金financially supported by the Technology Development Fund of China Academy of Machinery Science and Technology(No.170221ZY01)。
文摘Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.
文摘Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular maturation make vascularized organotypic tissue construction difficult,greatly limiting its use in tissue engineering and regenerative medicine. To address these limitations, recent studies have adopted pre-vascularized microtissue assembly for the rapid generation of functional tissue analogs with dense vascular networks and high cell density. In this article, we summarize the development of module assembly-based vascularized organotypic tissue construction and its application in tissue repair and regeneration, organ-scale tissue biomanufacturing, as well as advanced tissue modeling.
基金funded by the National Key Research and Development Program of China (2018YFE0104200)National Natural Science Foundation of China (51875310, 52175274, 82172065)Tsinghua Precision Medicine Foundation
文摘Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.
基金Project(5077400) supported by the National Natural Science Foundation of China
文摘The effects of pouring temperature,vibration frequency,and the number of curves in a serpentine channel,on themicrostructure and mechanical properties of Al-30%Si alloy processed by rheo-diecasting(RDC)were investigated.The semisolidAl-30%Si alloy slurry was prepared by vibration serpentine channel pouring(VSCP)process in the RDC process.The results showthat the pouring temperature,the vibration frequency,and the number of the curves strongly affect the microstructure and mechanicalproperties of Al-30%Si alloy.Under experimental conditions of a pouring temperature of850°C,a twelve-curve copper channel anda vibration frequency of80Hz,the primary Si grains are refined into fine compact grains with average grain size of about24.6μm inthe RDC samples assisted with VSCP.Moreover,the ultimate tensile strength(UTS),elongation and hardness of the RDC sample are296MPa,0.87%and HB155,respectively.It is concluded that the VSCP process can effectively refine the primary Si grains.Therefinement of primary Si grains is the major cause for the improvement of the mechanical properties of the RDC sample.
文摘The effect of different tempering temperatures on the microstructure and mechanical properties of airquenched high boron white cast iron was studied.The results indicate that the high boron white cast iron comprises dendritic matrix and inter-dendritic M 2 B boride;and the matrix comprises martensite and pearlite.After quenching in the air,the matrix is changed into lath martensite;but only 1-μm-size second phase exists in the matrix.After tempering,another second phase of several tens of nanometers is found in the matrix,and the size and quantity increase with an increase in tempering temperature.The two kinds of second precipitation phase with different sizes in the matrix have the same chemical formula,but their forming stages are different.The precipitation phase with larger size forms during the austenitizing process,while the precipitation phase with smaller size forms during the tempering process.When tempered at different temperatures after quenching,the hardness decreases with an increase in the tempering temperature,but it increases a little at 450 ℃ due to the precipitation strengthening effect of the second phase,and it decreases greatly due to the martensite decomposition above 450 ℃.The impact toughness increases a little when tempered below 300 ℃,but it then decreases continuously owing to the increase in size and quantity of the secondary precipitate above 300 ℃.Considered comprehensively,the optimum tempering temperature is suggested at 300 ℃ to obtain a good combination of hardness and toughness.
基金Supported by National Key R&D Program of China(Grant No.2017YFB1103400).
文摘The additive manufacturing of continuous fiber composites has the advantage of a high-precision and efficient forming process,which can realize the lightweight and integrated manufacturing of complex structures.However,many void defects exist between layers in the printing process of additive manufacturing;consequently,the bonding performance between layers is poor.The bonding neck is considered a key parameter for representing the quality of interfacial bonding.In this study,the formation mechanism of the bonding neck was comprehensively analyzed.First,the influence of the nozzle and basement temperatures on the printing performance and bonding neck size was measured.Second,CT scanning was used to realize the quantitative characterization of bonding neck parameters,and the reason behind the deviation of actual measurements from theoretical calculations was analyzed.When the nozzle temperature increased from 180 to 220℃,CT measurement showed that the bonding neck diameter increased from 0.29 to 0.34 mm,and the cross-sectional porosity reduced from 5.48%to 3.22%.Finally,the fracture mechanism was studied,and the influence of the interfacial bonding quality on the destruction process of the materials was determined.In conclusion,this study can assist in optimizing the process parameters,which improves the precision of the printing parts and performance between the layers.
基金Supported by National Natural Science Foundation of China(Grant Nos.51871010,51875129)Beijing Municipal Natural Science Foundation of China(Grant No.32020163212008).
文摘The QP980-DP980 dissimilar steel joints were fabricated by fiber laser welding.The weld zone(WZ)was fully martensitic structure,and heat-affected zone(HAZ)contained newly-formed martensite and partially tempered martensite(TM)in both steels.The supercritical HAZ of the QP980 side had higher microhardness(~549.5 Hv)than that of the WZ due to the finer martensite.A softened zone was present in HAZ of QP980 and DP980,the dropped microhardness of softened zone of the QP980 and DP980 wasΔ21.8 Hv andΔ40.9 Hv,respectively.Dislocation walls and slip bands were likely formed at the grain boundaries with the increase of strain,leading to the formation of low angle grain boundaries(LAGBs).Dislocation accumulation more easily occurred in the LAGBs than that of the HAGBs,which led to significant dislocation interaction and formation of cracks.The electron back-scattered diffraction(EBSD)results showed the fraction of LAGBs in sub-critical HAZ of DP980 side was the highest under different deformation conditions during tensile testing,resulting in the failure of joints located at the sub-critical HAZ of DP980 side.The QP980-DP980 dissimilar steel joints presented higher elongation(~11.21%)and ultimate tensile strength(~1011.53 MPa)than that of DP980-DP980 similar steel joints,because during the tensile process of the QP980-DP980 dissimilar steel joint(~8.2%and 991.38 MPa),the strain concentration firstly occurred on the excellent QP980 BM.Moreover,Erichsen cupping tests showed that the dissimilar welded joints had the lowest Erichsen value(~5.92 mm)and the peak punch force(~28.4 kN)due to the presence of large amount of brittle martensite in WZ and inhomogeneous deformation.
基金the financial support from the National Key Technologies Research & Development Program of China (No. 2018YFB1106000)the Youth Talent Project of CAST (No. 2019QNRC001)。
文摘Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical properties of these wall structures. Due to the higher vacancy binding energy of Cd, Cd-vacancy clusters are formed in the aging process and provide a large number of nucleation locations for θ′ phases. The higher diffusion coefficient of the Cd-vacancy cluster and the lower interfacial energy of θ′ phase lead to the formation of dense θ′ phases in the heat-treated α(Al). According to the strengthening model, after adding Cd in ER2319 welding wires, the yield strength increases by 43 MPa in the building direction of the heat-treated wall structures.
文摘The low temperature ion sulphuration-an effective surface engineering technique for reducing friction and wear of rubbing-pairs was introduced. It involves the principle of ion sulphuration process, microstructure of FeS film on 1045 steel, tribological properties of FeS film on steels, microstructions and tribological properties of MoS2 and nano-FeS/MoS2 multi-layered films, as well as their applications.
基金partially supported by the JST-Mirai Program Grant Number JPMJMI19E5a Grant-in-Aid for Science Research from the Japan Society for the Promotion of Science。
文摘In this study, the effect of the processing route using a friction stir processing(FSP) method on the microstructure and mechanical behavior of a Mg-9Li-1Zn alloy was systematically investigated. In the FSP method, the odd-numbered(1st and 3rd) process directions and even-numbered(2nd and 4th) passes were alternated to distribute the strain throughout the whole processed zone uniformly. Consequently, the processed zone had a much more uniform microstructure and hardness distribution than the processed zone obtained using the conventional FSP method. Using this method, the grain size of a Mg-9Li-1Zn sheet alloy was refined from ~31 μm to ~0.21 μm with uniformly distributedα and β phases. The processed alloy exhibited a high strength-ductility synergy with an ultimate tensile strength(UTS) of 220.1 MPa and total elongation of 70.0% at a strain rate of 10^(-3)s^(-1), overwhelmingly higher than those of the base metal, 155.6 MPa in UTS and 36.0%in elongation. The in-situ SEM-DIC analysis and TEM observation demonstrated that such an outstanding ductility with moderate strength is caused by grain boundary sliding, the dominant deformation mechanism of the ultra-fine-grained sample after FSP. The processing route with reverse processing direction was proven to be efficient in producing the ultrafine grain size microstructure and improving the mechanical properties of superlight Mg-9Li-1Zn alloy.
基金Project(U1637601)supported by the Joint Funds of the National Natural Science Foundation of China。
文摘Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.
基金supported by the Technology Development Fund of the China Academy of Machinery Science and Technology(No.170221ZY01).
文摘As a new type of lightweight structure,metallic lattice structure has higher stiffness and strength to weight ratio.To freely obtain 316L lattice structures with designed cell structure and adjustable porosity,additive manufacturing combined with investment casting was conducted to fabricate the 316L lattice structures with Kelvin cell.The compression simulation of 316L lattice structures with different porosities was carried out by using the finite element method.The numerical simulation results were verified by compression experiment,and the simulated results were consistent with the compression tests.The compressive mechanical properties of 316L lattice structures are directly related to porosity and independent of strut diameters.The 316L lattice structures with Kelvin cell have a smooth stress-strain curve and obvious plastic platform,and the hump stress-strain curves are avoided.