期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Nonlinear Optimal Control Method for Attitude Stabilization of Micro-Satellites 被引量:1
1
作者 G.Rigatos M.Abbaszadeh +1 位作者 K.Busawon L.Dala 《Guidance, Navigation and Control》 2022年第3期30-67,共38页
Attitude control and stabilization of micro-satellites is a nontrivial problem due to the highly nonlinear and multivariable structure of the satellites'state-space model.In this paper,a novel nonlinear optimal(H-... Attitude control and stabilization of micro-satellites is a nontrivial problem due to the highly nonlinear and multivariable structure of the satellites'state-space model.In this paper,a novel nonlinear optimal(H-infinity)control approach is developed for this control problem.The dynamic model of the satellite's attitude dynamics undergoesfirst approximate linearization around a temporary operating point which is updated at each iteration of the control algorithm.The linearization process relies on first-order Taylor series expansion and on the computation of the Jacobian matrices of the state-space model of the satellite's attitude dynamics.For the approximately linearized description of the satellite's attitude a stabilizing H-infinity feedback controller is designed.To compute the controller's feedback gains,an algebraic Riccati equation is solved at each time-step of the control method.The stability properties of the control scheme are proven through Lyapunov analysis.It is also demonstrated that the control method retains the advantages of linear optimal control that is fast and accurate tracking of the reference setpoints under moderate variations of the control inputs. 展开更多
关键词 Micro-satellites attitude control nonlinear optimal control H-infinity control differentialfiatness properties Taylor series expansion Jacobian matrices Lyapunov analysis global asymptotic stability
原文传递
Flatness-Based Control in Successive Loops for Unmanned Aerial Vehicles and Micro-Satellites
2
作者 Gerasimos Rigatos Masoud Abbaszadeh +1 位作者 Krishna Busawon Laurent Dala 《Guidance, Navigation and Control》 2023年第4期26-57,共32页
The control problem for the multivariable and nonlinear dynamics of unmanned aerial vehicles and micro-satellites is solved with the use of a flatness-based control approach which is implemented in successive loops.Th... The control problem for the multivariable and nonlinear dynamics of unmanned aerial vehicles and micro-satellites is solved with the use of a flatness-based control approach which is implemented in successive loops.The state-space model of(i)unmanned aerial vehicles and(ii)micro-satellites is separated into two subsystems,which are connected between them in cascading loops.Each one of these subsystems can be viewed independently as a differentially flat system and control about it can be performed with inversion of its dynamics as in the case of input–output linearized flat systems.The state variables of the second subsystem become virtual control inputs for the first subsystem.In turn,exogenous control inputs are applied to the first subsystem.The whole control method is implemented in two successive loops and its global stability properties are also proven through Lyapunov stability analysis.The validity of the control method is confirmed in two case studies:(a)control and trajectories tracking for the autonomous octocopter,(ii)control of the attitude dynamics of micro-satellites. 展开更多
关键词 Autonomous octocopter attitude dynamics of micro-satellites multivariable control differential flatness properties flatness-based control in successive loops global stability Lyapunov analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部