We report thermoelectric transport measurements across a graphene/hexagonal boron nitride (h-BN)/graphene heterostructure device. Using an AC lock-in technique, we are able to separate the thermoelectric contributio...We report thermoelectric transport measurements across a graphene/hexagonal boron nitride (h-BN)/graphene heterostructure device. Using an AC lock-in technique, we are able to separate the thermoelectric contribution to the I-V characteristics of these important device structures. The temperature gradient is measured optically using Raman spectroscopy, which enables us to explore thermoelectric transport produced at material interfaces, across length scales of just 1-2 nm. Based on the observed thermoelectric voltage (AV) and tem- perature gradient (AT), a Seebeck coefficient of -99.3 μV/K is ascertained for the heterostructure device. The obtained Seebeck coefficient can be useful for understanding the thermoelectric component in the cross-plane I-V behaviors of emerging 2D heterostructure devices. These results provide an approach to probing thermoelectric energy conversion in two-dimensional layered heterostructures.展开更多
We report on mid-infrared superabsorbers based on quasi-periodic moiré metasurfaces in metal-insulator-metal form. By varying the spacer thickness, moiré rotation angle, and filling factor of the superabsorb...We report on mid-infrared superabsorbers based on quasi-periodic moiré metasurfaces in metal-insulator-metal form. By varying the spacer thickness, moiré rotation angle, and filling factor of the superabsorbers, we can tune narrowband or broadband absorption in a systematic way. With their high tunability of near-unity absorption and simple fabrication, in combination with decoupled mode theory for an efficient design, moiré superabsorbers are well-suited for a wide range of applications in sensing, imaging, and communication.展开更多
文摘We report thermoelectric transport measurements across a graphene/hexagonal boron nitride (h-BN)/graphene heterostructure device. Using an AC lock-in technique, we are able to separate the thermoelectric contribution to the I-V characteristics of these important device structures. The temperature gradient is measured optically using Raman spectroscopy, which enables us to explore thermoelectric transport produced at material interfaces, across length scales of just 1-2 nm. Based on the observed thermoelectric voltage (AV) and tem- perature gradient (AT), a Seebeck coefficient of -99.3 μV/K is ascertained for the heterostructure device. The obtained Seebeck coefficient can be useful for understanding the thermoelectric component in the cross-plane I-V behaviors of emerging 2D heterostructure devices. These results provide an approach to probing thermoelectric energy conversion in two-dimensional layered heterostructures.
基金financial support of the Office of Naval Research Young Investigator Program (No. N00014-17-1-2424)
文摘We report on mid-infrared superabsorbers based on quasi-periodic moiré metasurfaces in metal-insulator-metal form. By varying the spacer thickness, moiré rotation angle, and filling factor of the superabsorbers, we can tune narrowband or broadband absorption in a systematic way. With their high tunability of near-unity absorption and simple fabrication, in combination with decoupled mode theory for an efficient design, moiré superabsorbers are well-suited for a wide range of applications in sensing, imaging, and communication.