The effect of cerium(Ce)addition on the eutectic Si,β-Al_5Fe Si phase,and the tensile properties of A380 alloy specimens prepared by squeeze-casting were studied by optical microscopy(OM),scanning electron microscopy...The effect of cerium(Ce)addition on the eutectic Si,β-Al_5Fe Si phase,and the tensile properties of A380 alloy specimens prepared by squeeze-casting were studied by optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).The experimental results showed that Ce more effectively modified the eutectic Si and refined theβ-Al_5Fe Si.The refinement effect significantly increased under a specific pressure of 100 MPa with the addition of Ce from 0.1wt%to 0.9wt%.In contrast,the average length and the aspect ratio of the eutectic Si andβ-Al_5Fe Si exhibited their optimal values when the content of the added Ce was greater than 0.5wt%.Needle-like Al_8Cu_4Ce was precipitated with the addition of excessive Ce;hence,the mechanical properties of A380 gradually decreased with increasing Ce content in the range from 0.3wt%to 0.9wt%.展开更多
In order to improve the properties by chemical modification and to optimize the alkali concentration, we treated Borassus fruit fine fibers with aqueous sodium hydroxide solutions of different concentra- tions. In eac...In order to improve the properties by chemical modification and to optimize the alkali concentration, we treated Borassus fruit fine fibers with aqueous sodium hydroxide solutions of different concentra- tions. In each case, the tensile properties of the fibers were determined. The morphology of the untreated and alkali treated fibers was observed using scanning electron microscope. The surface of the fibers became rough on alkali treatment. The tensile properties of the fibers improved on alkali treatment. The fibers attained maximum tensile properties when treated with 15% aqueous sodium hydroxide solution and decreased thereafter. The crystallinity index of the fibers showed a similar trend. The thermal stability of the alkali treated fibers was found to be higher than that of untreated fibers. Further, the char content was maximum for fibers treated with alkali having concentration of 15% and above. The chemical composition indicated that the percentageof a-cellulose was maximum when the fibers were treated with 15% aqueous sodium hydroxide solution and then decreased thereafter thus indicating the beginning of degradation of the fibers at higher concentrations. Thus, the optimum concentration of NaOH was established as 15% for alkali treatment of the Borassus fibers.展开更多
The paper presents an energy performance assessment of CO2 removal for crude synthetic natural gas (SNG) upgrade by Selexol absorption process. A simplified process simulation of the Selexol process concerning power...The paper presents an energy performance assessment of CO2 removal for crude synthetic natural gas (SNG) upgrade by Selexol absorption process. A simplified process simulation of the Selexol process concerning power requirement and separation performance was developed. The assessment indicates that less pressure difference between crude SNG and absorption pressure favors the energy performance of CO2 removal process. When both crude SNG and absorption pressures are 20 bar, CO2 removal process has the best energy performance. The optimal specific power consumption of the CO2 removal process is 566 kJ/kgCO2. The sensitivity analysis shows that the CO2 removal efficiency would significantly influence the total power consumption of the removal process, as well as higher heating value (HHV) and CO2 content in SNG. However, the specific power consumption excluding crude SNG and SNG compressions changes little with the variance of CO2 removal efficiency. If by-product CO2 is compressed for CO2 capture, the process would turn into a CO2-sink for the atmosphere. Correspondingly, an increase of 281 kJ/kgCO2 in specific power consumption is required for compressing the separated CO2.展开更多
A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element m...A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.展开更多
In the present study,the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model.The results indicate that three typical nucleation modes ...In the present study,the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model.The results indicate that three typical nucleation modes of condensate droplets are produced by changing the geometrical parameters of nanoarrays.Droplets nucleated at the top(top-nucleation mode),or in the upside interpillar space of nanoarrays(side-nucleation mode),generate the non-wetting Cassie state,whereas the ones nucleated at the bottom corners between the nanoarrays(bottom-nucleation mode) present the wetting Wenzel state.Time evolutions of droplet pressures at the upside and downside of the liquid phase are analyzed to understand the wetting behaviors of the droplets condensed from different nucleation modes.The phenomena of droplet condensation on nanoarrays patterned with different hydrophilic and hydrophobic regions are simulated,indicating that the nucleation mode of condensate droplets can also be manipulated by modifying the local intrinsic wettability of nanoarray surface.The simulation results are compared well with the experimental observations reported in the literature.展开更多
As energy crisis and environment pollution all around the world threaten the widespread use of fossil fuels,compressed natural gas(CNG)vehicles are explored as an alternative to the conventional gasoline powered vehic...As energy crisis and environment pollution all around the world threaten the widespread use of fossil fuels,compressed natural gas(CNG)vehicles are explored as an alternative to the conventional gasoline powered vehicles.Because of the limited space available for the car,the composite pressure vessel(TypeⅡ)has been applied to the CNG vehicles to reach large capacity and weight lightening vehicles.High pressure vessel(TypeⅡ)is composed of a composite layer and a metal liner.The metal liner is formed by the deep drawing and ironing(D.D.I.)process,which is a complex process of deep drawing and ironing.The cylinder part is reinforced by composite layer wrapped through the filament winding process and is bonded to the liner by the curing process.In this study,an integrated design method was presented by establishing the techniques for FE analysis of entire processes(D.D.I.,filament winding and curing processes)to manufacture the CNG composite pressure vessel(TypeⅡ).Dimensions of the dies and the punches of the 1 st(cup drawing),2 nd(redrawing-ironing 1-ironing 2)and 3 rd(redrawing-ironing)stages were calculated theoretically,and shape of tractrix die to be satisfied with the minimum forming load was suggested for life improvement and manufacturing costs in the D.D.I.process.Thickness of the composite material was determined in the filament winding process,finally,conditions of the curing process(number of heating stage,curing temperature,heating rate and time)were proposed to reinforce adhesive strength between the composite layers.展开更多
This study introduced a novel fabrication of aluminum–carbon nanotube(CNT) composites by employing bulk acoustic waves and accumulative roll bonding(ARB).In this method, CNT particles were aligned using ultrasonic st...This study introduced a novel fabrication of aluminum–carbon nanotube(CNT) composites by employing bulk acoustic waves and accumulative roll bonding(ARB).In this method, CNT particles were aligned using ultrasonic standing wave in an aqueous media, and the arrayed particles were precipitated on the aluminum plate substrate.Then, the plates rolled on each other through the ARB process with four passes.Optical and scanning electron micrographs demonstrated the effective aligning of CNTs on the aluminum substrate with a negligible deviation of arrayed CNTs through the ARB process.The X-ray diffraction pattern of the developed composites showed no peaks for carbon and aluminum carbide.In addition, tensile tests showed that the longitudinal strength of the specimens processed with aligned CNTs was significantly greater than that of the specimens with common randomly dispersed particles.The proposed technique is beneficial for the fabrication of Al–CNT composites with directional mechanical strength.展开更多
Health monitoring of structures and people requires the integration of sensors and devices on various 3D curvilinear,hierarchically structured,and even dynamically changing surfaces.Therefore,it is highly desirable to...Health monitoring of structures and people requires the integration of sensors and devices on various 3D curvilinear,hierarchically structured,and even dynamically changing surfaces.Therefore,it is highly desirable to explore conformal manufacturing techniques to fabricate and integrate soft deformable devices on complex 3D curvilinear surfaces.Although planar fabrication methods are not directly suitable to manufacture conformal devices on 3D curvilinear surfaces,they can be combined with stretchable structures and the use of transfer printing or assembly methods to enable the device integration on 3D surfaces.Combined with functional nanomaterials,various direct printing and writing methods have also been developed to fabricate conformal electronics on curved surfaces with intimate contact even over a large area.After a brief summary of the recent advancement of the recent conformal manufacturing techniques,we also discuss the challenges and potential opportunities for future development in this burgeoning field of conformal electronics on complex 3D surfaces.展开更多
High-intensity ultrasonic vibration was focused on the tip of conical steel specimens to induce severe plastic deformation at room temperature. We found, for the first time, that grain size smaller than 200 nm was obt...High-intensity ultrasonic vibration was focused on the tip of conical steel specimens to induce severe plastic deformation at room temperature. We found, for the first time, that grain size smaller than 200 nm was obtained. Furthermore, the sharp tip of the conical specimen became umbrella-shaped or disk-shaped. The tip size changed from 0.5 mm diameter to a disk about 5 mm diameter, representing a large amount of plastic deformation in the metal at the tip of the conical specimen.展开更多
Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gu...Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gun. The coated surface was treated by Excimer laser having a wavelength of 248 nm and pulse duration of 24 ns. The surface structure of the treated coating was examined by field emission scanning electron microscope and X-ray diffraction (XRD). A detailed analysis of the effects of various laser parameters including laser energy density (fluence), pulse repetition rate (PRR), and number of pulses on the morphology and the microstructure of the coatings are presented.展开更多
Simulation of fluid-flow topology and thermal behavior in a round tube heat exchanger(RTHX)installed by three V-rib sets is reported.The expected phenomena for the rib installation are the generated vortex flow,imping...Simulation of fluid-flow topology and thermal behavior in a round tube heat exchanger(RTHX)installed by three V-rib sets is reported.The expected phenomena for the rib installation are the generated vortex flow,impinging flow,greater fluid blending and thermal boundary layer disturbance(TBLD).These phenomena are key causes of the augmentation of heat transfer potentiality and thermal efficiency of the RTHX.Effects of rib height(b1=0.05D–0.25D and b2=0.05D–0.25D),rib pitch or rib spacing(P=D,1.5D and 2D)and fluid directions(positive x(+x flow direction)and negative x(–x flow direction))on fluid-flow behavior and thermo-hydraulic characteristic are considered.The laminar air flow under Reynolds numbers between 100 to 2000 calculated by the inlet condition is focused.The current numerical problem of the RTHX fitted with V-ribs can be solved by a commercial code/program(the finite volume analysis).Firstly,the tested-tube model is carefully validated.The preliminary results of the validation show that the numerical model has great consistency for fluid flow and thermal structure prediction.The simulated outcomes are plotted in features of streamlines flow,local Nusselt number contours and temperature contours which explain the mechanism within the RTHX.The thermal assessments within the RTHX are performed with dimensionless variables,which include the Nusselt number,the friction factor and the thermal enhancement factor.The important mechanisms:vortex flow,impinging flow,better fluid blending and TBLD,are observed when the RTHX are installed with ribs.The maximum heat transfer potentiality is 19 times upper than that of the RTHX without ribs and the optimum thermal enhancement factor is around 4.10.展开更多
Bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cells, and constitute the backbone of a fuel cell stack. Currently, ...Bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cells, and constitute the backbone of a fuel cell stack. Currently, commercial bipolar plates are made of graphite composite because of its relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite’s manufacturability, permeability, and durability of shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. The main objective of this study is to evaluate the effect of terminal connection design and bipolar plate material on PEM fuel cell overall performance. The study has indicated that single cell performance can be improved by combining terminals into metallic bipolar plates. This terminal design reduces the internal cell resistance and eliminates the need for additional terminal plates. The improved single cell performance by 18% and the increased savings in hydrogen consumption by 15% at the current density of 0.30 A/cm2 was attributed to the robust metal to metal contact between the terminal and the metallic bipolar plates. However, connecting metal terminal directly into graphite bipolar plates did not exhibit similar improvement in the performance of graphite fuel cells because of their brittleness that could have caused damage in the plates and poor contacts.展开更多
Jute is a natural fiber widely used as reinforcement in composites due to its high tensile strength and stiffness,but they can easily absorb water and have their physical properties compromised.The water absorption pr...Jute is a natural fiber widely used as reinforcement in composites due to its high tensile strength and stiffness,but they can easily absorb water and have their physical properties compromised.The water absorption properties of jute/polyester composites are evaluated according to ASTM D 570 and the effect of humidity in the composite mechanical behavior is also analyzed.The composite showed a pseudo-Fickian behavior and gained 13.37%in weight after the test.It also lost tensile strength and elasticity modulus,and increased its specific deformation.Scanning electron microscope images showed that wet specimens were more subject to cracks,voids and fiber pullout than dry specimens.Failures produced by water diffusion in composite and polymer plasticization,added to breakdown in the fibers’cellulosic structures,justify the change in mechanical properties due to water absorption.展开更多
Thermal performance enhancement in a square channel heat exchanger(HX)using a passive technique is presented.Vortex turbulator insertion in a square channel HX as a passive technique is selected for thermal improvemen...Thermal performance enhancement in a square channel heat exchanger(HX)using a passive technique is presented.Vortex turbulator insertion in a square channel HX as a passive technique is selected for thermal improvement.The vortex turbulator of interest is discrete X-V baffles(XVB).The discrete XVBs are inserted in the square channel with the main aim of generating vortex flow.The vortex flow generated can support the enhanced convective heat transfer coefficient and also enhance HX performance.Effects of baffle configuration(type A and B),baffle size(w/H=0.05,0.10,0.15 and 0.20),baffle distance(e/H=1,1.5 and 2)and flow direction(±x air flow paths)on fluid flow and thermal topologies are numerically investigated by using a commercial code.As shown by the numerical results,the predicted flow configuration with the discrete XVB insertions,which include impinging and vortex streams,is found through the HX channel.The perturbing thermal boundary layer and greater air blending are also found through the HX channel inserted with the discrete XVB.These mechanisms promote and augment the convection heat transfer coefficient,heat transfer rate and rise thermal potentiality.The maximum Nusselt number of the channel with the baffles inserted is 11.01 times upper than that of the smooth channel,while the greatest thermal performance factor(TPF)is observed to be around 3.45.展开更多
Electrical machines are precarious mechanisms in manufacturing practices. A motor failure may yield an unexpected interruption at the industrial plant, with consequences in costs, product quality, and security. To gov...Electrical machines are precarious mechanisms in manufacturing practices. A motor failure may yield an unexpected interruption at the industrial plant, with consequences in costs, product quality, and security. To govern the conditions of each part of motor, various testing and monitoring methods have been developed. In this paper, a review on effective fault indicators and vibration based condition monitoring approaches of rotating electrical machines has been accomplished. The determination of the review is to progress the understanding of vibration based analysis, and its use in the Machine Health Monitoring. A variety of analysis was identified to highlight the concept of predictive maintenance in industries. The techniques of vibration analysis were investigated to detect both healthy and fault related signals of rotating machineries.展开更多
Mild steel plates of thicknesses 0.5 mm,0.6 mm,0.7 mm,0.8 mm,0.9 mm and 1.0 mm were prepared as test samples.After welding with the developed welding robot and manual electric arc welding machine these test samples we...Mild steel plates of thicknesses 0.5 mm,0.6 mm,0.7 mm,0.8 mm,0.9 mm and 1.0 mm were prepared as test samples.After welding with the developed welding robot and manual electric arc welding machine these test samples were subjected to Tensile Strength and Hardness tests.All data obtained including hardness,load and extension were analyzed and the data produced from electric arc welding operations,the robot welding operations and un-welded plates(control)were compared with one another.The statistical analyses of hardness,load and extension tests for developed welding robot,manual electric arc welding and un-welded(control)mild steel plates of different thicknesses were carried out.The results revealed that for hardness,the developed robot welding has the highest mean value of 115.30,standard deviation value of 14.32 and variance value of 205.06.The descriptive statistics of the load showed that the developed robot welding samples collectively have the lowest mean value of 2,536.85,standard deviation value of 704.21 and variance value of 495,911.72.The descriptive statistics of the extension in which the developed robot welding samples collectively have the lowest mean value of 1.29,standard deviation value of 0.43 and variance value of 0.18 were also determined.The result for hardness showed homogeneity of variance among hardness tests of the samples,which implies variation in the hardness test among the tests of the samples since p-value is 0.038.While the result for loads shows homogeneity of variance among loads of the samples in which the result reveals that there is no variation in the loads among the tests of the samples since p-value is 0.322.The result for extension shows homogeneity of variance among extensions of the samples in which it revealed that there is variation in the extensions among the tests of the samples since p-value is 0.011.The analysis of variance(ANOVA)test result revealed that there is a significant difference in the hardness of the samples in which developed robot welding operation gave the highest hardness compared with electric arc welding and un-welded(CONTROL)since p-value is 0.028.The ANOVA test result for load revealed that there is no significant difference in the loads of the samples since p-value is 0.51.The ANOVA test result of the extension shows that there is a significant difference in the extension of the samples in which developed robot welding operation gave the lowest extension compared with electric arc welding and un-welded(CONTROL)since p-value is 0.001.The results of hardness also showed the mean difference of 16.48 between developed robot welding and un-welded(CONTROL)samples and 7.26 between developed robot welding and electric arc welding samples.Finally,for extension the mean difference of-5.28 between developed robot welding and un-welded(CONTROL)samples and-1.22 between developed robot welding and electric arc welding samples were established.展开更多
Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.T...Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.This study analyzed the effects of adding aluminum powder residue to the physical properties of ceramic masses with the aim of obtaining new formulations for ceramic tiles.The aluminum residue and the standard mass for ceramic tile production were chemically characterized and homogenized to obtain new formulations with the incorporation of 4%,6%,8%,and 10%aluminum powder in the ceramic mass.The specimens were uniaxially pressed and sintered at a temperature of 1,200°C for 2 h,undergoing three different temperatures(100°C,400°C,and 650°C)for 30 min each.They were evaluated for WA(water absorption),RLq(linear shrinkage),SEM(scanning electron microscopy),and TRF(flexural strength)modulus.The results demonstrate that the addition of aluminum powder residue is feasible in the proposed formulations(4%,6%,8%,and 10%),as they enhance the mechanical properties of the ceramics compared to the formulation with 0%residue,at a sintering temperature of 1,200°C.展开更多
基金financially supported by the International Science and Technology Cooperation Program of China (No.2014DFA53050)
文摘The effect of cerium(Ce)addition on the eutectic Si,β-Al_5Fe Si phase,and the tensile properties of A380 alloy specimens prepared by squeeze-casting were studied by optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).The experimental results showed that Ce more effectively modified the eutectic Si and refined theβ-Al_5Fe Si.The refinement effect significantly increased under a specific pressure of 100 MPa with the addition of Ce from 0.1wt%to 0.9wt%.In contrast,the average length and the aspect ratio of the eutectic Si andβ-Al_5Fe Si exhibited their optimal values when the content of the added Ce was greater than 0.5wt%.Needle-like Al_8Cu_4Ce was precipitated with the addition of excessive Ce;hence,the mechanical properties of A380 gradually decreased with increasing Ce content in the range from 0.3wt%to 0.9wt%.
文摘In order to improve the properties by chemical modification and to optimize the alkali concentration, we treated Borassus fruit fine fibers with aqueous sodium hydroxide solutions of different concentra- tions. In each case, the tensile properties of the fibers were determined. The morphology of the untreated and alkali treated fibers was observed using scanning electron microscope. The surface of the fibers became rough on alkali treatment. The tensile properties of the fibers improved on alkali treatment. The fibers attained maximum tensile properties when treated with 15% aqueous sodium hydroxide solution and decreased thereafter. The crystallinity index of the fibers showed a similar trend. The thermal stability of the alkali treated fibers was found to be higher than that of untreated fibers. Further, the char content was maximum for fibers treated with alkali having concentration of 15% and above. The chemical composition indicated that the percentageof a-cellulose was maximum when the fibers were treated with 15% aqueous sodium hydroxide solution and then decreased thereafter thus indicating the beginning of degradation of the fibers at higher concentrations. Thus, the optimum concentration of NaOH was established as 15% for alkali treatment of the Borassus fibers.
基金supported by the Special Fund for Major State Basic Research Projects of China(2010CB732206)
文摘The paper presents an energy performance assessment of CO2 removal for crude synthetic natural gas (SNG) upgrade by Selexol absorption process. A simplified process simulation of the Selexol process concerning power requirement and separation performance was developed. The assessment indicates that less pressure difference between crude SNG and absorption pressure favors the energy performance of CO2 removal process. When both crude SNG and absorption pressures are 20 bar, CO2 removal process has the best energy performance. The optimal specific power consumption of the CO2 removal process is 566 kJ/kgCO2. The sensitivity analysis shows that the CO2 removal efficiency would significantly influence the total power consumption of the removal process, as well as higher heating value (HHV) and CO2 content in SNG. However, the specific power consumption excluding crude SNG and SNG compressions changes little with the variance of CO2 removal efficiency. If by-product CO2 is compressed for CO2 capture, the process would turn into a CO2-sink for the atmosphere. Correspondingly, an increase of 281 kJ/kgCO2 in specific power consumption is required for compressing the separated CO2.
文摘A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51101035,51371051,and 51306037)
文摘In the present study,the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model.The results indicate that three typical nucleation modes of condensate droplets are produced by changing the geometrical parameters of nanoarrays.Droplets nucleated at the top(top-nucleation mode),or in the upside interpillar space of nanoarrays(side-nucleation mode),generate the non-wetting Cassie state,whereas the ones nucleated at the bottom corners between the nanoarrays(bottom-nucleation mode) present the wetting Wenzel state.Time evolutions of droplet pressures at the upside and downside of the liquid phase are analyzed to understand the wetting behaviors of the droplets condensed from different nucleation modes.The phenomena of droplet condensation on nanoarrays patterned with different hydrophilic and hydrophobic regions are simulated,indicating that the nucleation mode of condensate droplets can also be manipulated by modifying the local intrinsic wettability of nanoarray surface.The simulation results are compared well with the experimental observations reported in the literature.
基金Supported by National Research Foundation of Korea(NRF)Korea Government(MSIT)(Grant No.2019R1F1A1058521)
文摘As energy crisis and environment pollution all around the world threaten the widespread use of fossil fuels,compressed natural gas(CNG)vehicles are explored as an alternative to the conventional gasoline powered vehicles.Because of the limited space available for the car,the composite pressure vessel(TypeⅡ)has been applied to the CNG vehicles to reach large capacity and weight lightening vehicles.High pressure vessel(TypeⅡ)is composed of a composite layer and a metal liner.The metal liner is formed by the deep drawing and ironing(D.D.I.)process,which is a complex process of deep drawing and ironing.The cylinder part is reinforced by composite layer wrapped through the filament winding process and is bonded to the liner by the curing process.In this study,an integrated design method was presented by establishing the techniques for FE analysis of entire processes(D.D.I.,filament winding and curing processes)to manufacture the CNG composite pressure vessel(TypeⅡ).Dimensions of the dies and the punches of the 1 st(cup drawing),2 nd(redrawing-ironing 1-ironing 2)and 3 rd(redrawing-ironing)stages were calculated theoretically,and shape of tractrix die to be satisfied with the minimum forming load was suggested for life improvement and manufacturing costs in the D.D.I.process.Thickness of the composite material was determined in the filament winding process,finally,conditions of the curing process(number of heating stage,curing temperature,heating rate and time)were proposed to reinforce adhesive strength between the composite layers.
文摘This study introduced a novel fabrication of aluminum–carbon nanotube(CNT) composites by employing bulk acoustic waves and accumulative roll bonding(ARB).In this method, CNT particles were aligned using ultrasonic standing wave in an aqueous media, and the arrayed particles were precipitated on the aluminum plate substrate.Then, the plates rolled on each other through the ARB process with four passes.Optical and scanning electron micrographs demonstrated the effective aligning of CNTs on the aluminum substrate with a negligible deviation of arrayed CNTs through the ARB process.The X-ray diffraction pattern of the developed composites showed no peaks for carbon and aluminum carbide.In addition, tensile tests showed that the longitudinal strength of the specimens processed with aligned CNTs was significantly greater than that of the specimens with common randomly dispersed particles.The proposed technique is beneficial for the fabrication of Al–CNT composites with directional mechanical strength.
基金This research is supported by the National Science Foundation(Grant No.ECCS-1933072)the Doctoral New Investigator grant from the American Chemical Society Petro-leum Research Fund(59021-DNI7)the National Heart,Lung,And Blood Institute of the National Institutes of Health under Award Number R61HL154215,and Penn State University.
文摘Health monitoring of structures and people requires the integration of sensors and devices on various 3D curvilinear,hierarchically structured,and even dynamically changing surfaces.Therefore,it is highly desirable to explore conformal manufacturing techniques to fabricate and integrate soft deformable devices on complex 3D curvilinear surfaces.Although planar fabrication methods are not directly suitable to manufacture conformal devices on 3D curvilinear surfaces,they can be combined with stretchable structures and the use of transfer printing or assembly methods to enable the device integration on 3D surfaces.Combined with functional nanomaterials,various direct printing and writing methods have also been developed to fabricate conformal electronics on curved surfaces with intimate contact even over a large area.After a brief summary of the recent advancement of the recent conformal manufacturing techniques,we also discuss the challenges and potential opportunities for future development in this burgeoning field of conformal electronics on complex 3D surfaces.
文摘High-intensity ultrasonic vibration was focused on the tip of conical steel specimens to induce severe plastic deformation at room temperature. We found, for the first time, that grain size smaller than 200 nm was obtained. Furthermore, the sharp tip of the conical specimen became umbrella-shaped or disk-shaped. The tip size changed from 0.5 mm diameter to a disk about 5 mm diameter, representing a large amount of plastic deformation in the metal at the tip of the conical specimen.
文摘Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gun. The coated surface was treated by Excimer laser having a wavelength of 248 nm and pulse duration of 24 ns. The surface structure of the treated coating was examined by field emission scanning electron microscope and X-ray diffraction (XRD). A detailed analysis of the effects of various laser parameters including laser energy density (fluence), pulse repetition rate (PRR), and number of pulses on the morphology and the microstructure of the coatings are presented.
基金supported by King Mongkut’s Institute of Technology Ladkrabang [2566-02-01-006].
文摘Simulation of fluid-flow topology and thermal behavior in a round tube heat exchanger(RTHX)installed by three V-rib sets is reported.The expected phenomena for the rib installation are the generated vortex flow,impinging flow,greater fluid blending and thermal boundary layer disturbance(TBLD).These phenomena are key causes of the augmentation of heat transfer potentiality and thermal efficiency of the RTHX.Effects of rib height(b1=0.05D–0.25D and b2=0.05D–0.25D),rib pitch or rib spacing(P=D,1.5D and 2D)and fluid directions(positive x(+x flow direction)and negative x(–x flow direction))on fluid-flow behavior and thermo-hydraulic characteristic are considered.The laminar air flow under Reynolds numbers between 100 to 2000 calculated by the inlet condition is focused.The current numerical problem of the RTHX fitted with V-ribs can be solved by a commercial code/program(the finite volume analysis).Firstly,the tested-tube model is carefully validated.The preliminary results of the validation show that the numerical model has great consistency for fluid flow and thermal structure prediction.The simulated outcomes are plotted in features of streamlines flow,local Nusselt number contours and temperature contours which explain the mechanism within the RTHX.The thermal assessments within the RTHX are performed with dimensionless variables,which include the Nusselt number,the friction factor and the thermal enhancement factor.The important mechanisms:vortex flow,impinging flow,better fluid blending and TBLD,are observed when the RTHX are installed with ribs.The maximum heat transfer potentiality is 19 times upper than that of the RTHX without ribs and the optimum thermal enhancement factor is around 4.10.
文摘Bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cells, and constitute the backbone of a fuel cell stack. Currently, commercial bipolar plates are made of graphite composite because of its relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite’s manufacturability, permeability, and durability of shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. The main objective of this study is to evaluate the effect of terminal connection design and bipolar plate material on PEM fuel cell overall performance. The study has indicated that single cell performance can be improved by combining terminals into metallic bipolar plates. This terminal design reduces the internal cell resistance and eliminates the need for additional terminal plates. The improved single cell performance by 18% and the increased savings in hydrogen consumption by 15% at the current density of 0.30 A/cm2 was attributed to the robust metal to metal contact between the terminal and the metallic bipolar plates. However, connecting metal terminal directly into graphite bipolar plates did not exhibit similar improvement in the performance of graphite fuel cells because of their brittleness that could have caused damage in the plates and poor contacts.
基金the Federal Institute of Education,Science and Technology of Bahia(IFBA)and its Office of Research,Graduation Studies and Innovation(PRPGI)for the financial support.
文摘Jute is a natural fiber widely used as reinforcement in composites due to its high tensile strength and stiffness,but they can easily absorb water and have their physical properties compromised.The water absorption properties of jute/polyester composites are evaluated according to ASTM D 570 and the effect of humidity in the composite mechanical behavior is also analyzed.The composite showed a pseudo-Fickian behavior and gained 13.37%in weight after the test.It also lost tensile strength and elasticity modulus,and increased its specific deformation.Scanning electron microscope images showed that wet specimens were more subject to cracks,voids and fiber pullout than dry specimens.Failures produced by water diffusion in composite and polymer plasticization,added to breakdown in the fibers’cellulosic structures,justify the change in mechanical properties due to water absorption.
文摘Thermal performance enhancement in a square channel heat exchanger(HX)using a passive technique is presented.Vortex turbulator insertion in a square channel HX as a passive technique is selected for thermal improvement.The vortex turbulator of interest is discrete X-V baffles(XVB).The discrete XVBs are inserted in the square channel with the main aim of generating vortex flow.The vortex flow generated can support the enhanced convective heat transfer coefficient and also enhance HX performance.Effects of baffle configuration(type A and B),baffle size(w/H=0.05,0.10,0.15 and 0.20),baffle distance(e/H=1,1.5 and 2)and flow direction(±x air flow paths)on fluid flow and thermal topologies are numerically investigated by using a commercial code.As shown by the numerical results,the predicted flow configuration with the discrete XVB insertions,which include impinging and vortex streams,is found through the HX channel.The perturbing thermal boundary layer and greater air blending are also found through the HX channel inserted with the discrete XVB.These mechanisms promote and augment the convection heat transfer coefficient,heat transfer rate and rise thermal potentiality.The maximum Nusselt number of the channel with the baffles inserted is 11.01 times upper than that of the smooth channel,while the greatest thermal performance factor(TPF)is observed to be around 3.45.
文摘Electrical machines are precarious mechanisms in manufacturing practices. A motor failure may yield an unexpected interruption at the industrial plant, with consequences in costs, product quality, and security. To govern the conditions of each part of motor, various testing and monitoring methods have been developed. In this paper, a review on effective fault indicators and vibration based condition monitoring approaches of rotating electrical machines has been accomplished. The determination of the review is to progress the understanding of vibration based analysis, and its use in the Machine Health Monitoring. A variety of analysis was identified to highlight the concept of predictive maintenance in industries. The techniques of vibration analysis were investigated to detect both healthy and fault related signals of rotating machineries.
文摘Mild steel plates of thicknesses 0.5 mm,0.6 mm,0.7 mm,0.8 mm,0.9 mm and 1.0 mm were prepared as test samples.After welding with the developed welding robot and manual electric arc welding machine these test samples were subjected to Tensile Strength and Hardness tests.All data obtained including hardness,load and extension were analyzed and the data produced from electric arc welding operations,the robot welding operations and un-welded plates(control)were compared with one another.The statistical analyses of hardness,load and extension tests for developed welding robot,manual electric arc welding and un-welded(control)mild steel plates of different thicknesses were carried out.The results revealed that for hardness,the developed robot welding has the highest mean value of 115.30,standard deviation value of 14.32 and variance value of 205.06.The descriptive statistics of the load showed that the developed robot welding samples collectively have the lowest mean value of 2,536.85,standard deviation value of 704.21 and variance value of 495,911.72.The descriptive statistics of the extension in which the developed robot welding samples collectively have the lowest mean value of 1.29,standard deviation value of 0.43 and variance value of 0.18 were also determined.The result for hardness showed homogeneity of variance among hardness tests of the samples,which implies variation in the hardness test among the tests of the samples since p-value is 0.038.While the result for loads shows homogeneity of variance among loads of the samples in which the result reveals that there is no variation in the loads among the tests of the samples since p-value is 0.322.The result for extension shows homogeneity of variance among extensions of the samples in which it revealed that there is variation in the extensions among the tests of the samples since p-value is 0.011.The analysis of variance(ANOVA)test result revealed that there is a significant difference in the hardness of the samples in which developed robot welding operation gave the highest hardness compared with electric arc welding and un-welded(CONTROL)since p-value is 0.028.The ANOVA test result for load revealed that there is no significant difference in the loads of the samples since p-value is 0.51.The ANOVA test result of the extension shows that there is a significant difference in the extension of the samples in which developed robot welding operation gave the lowest extension compared with electric arc welding and un-welded(CONTROL)since p-value is 0.001.The results of hardness also showed the mean difference of 16.48 between developed robot welding and un-welded(CONTROL)samples and 7.26 between developed robot welding and electric arc welding samples.Finally,for extension the mean difference of-5.28 between developed robot welding and un-welded(CONTROL)samples and-1.22 between developed robot welding and electric arc welding samples were established.
文摘Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.This study analyzed the effects of adding aluminum powder residue to the physical properties of ceramic masses with the aim of obtaining new formulations for ceramic tiles.The aluminum residue and the standard mass for ceramic tile production were chemically characterized and homogenized to obtain new formulations with the incorporation of 4%,6%,8%,and 10%aluminum powder in the ceramic mass.The specimens were uniaxially pressed and sintered at a temperature of 1,200°C for 2 h,undergoing three different temperatures(100°C,400°C,and 650°C)for 30 min each.They were evaluated for WA(water absorption),RLq(linear shrinkage),SEM(scanning electron microscopy),and TRF(flexural strength)modulus.The results demonstrate that the addition of aluminum powder residue is feasible in the proposed formulations(4%,6%,8%,and 10%),as they enhance the mechanical properties of the ceramics compared to the formulation with 0%residue,at a sintering temperature of 1,200°C.