This paper deals with optimization of hard switching commutation mode for high-power, high-frequency consumer applications for selected power transistor. The experimental investigation of suitable settings is outgoing...This paper deals with optimization of hard switching commutation mode for high-power, high-frequency consumer applications for selected power transistor. The experimental investigation of suitable settings is outgoing from simulation analysis of hard switching for different transistor structures. For these purposes, the simulation models of power semiconductor switches with high level of validity have been used. After that, the experimental analysis for selected transistor was done with change of parameters that are influencing commutation process of transistor. Target of such kind of analysis was to reach as low switching losses as possible, achieving high power density and efficiency of power system, without utilization of improved switching techniques such as resonant switching. The results confirm that this task is realizable through use of progressive semiconductor devices such as SiC diodes and/or through latest families of MOSFET devices.展开更多
The paper deals with the comparison of three different digital devices used for the computing of permanent magnet synchronous motor (PMSM) model. Model is used for virtual high frequency injection method (VHFIM) s...The paper deals with the comparison of three different digital devices used for the computing of permanent magnet synchronous motor (PMSM) model. Model is used for virtual high frequency injection method (VHFIM) sensorless control, where injection and acting voltages are virtual ones. For computing the whole PMSM model, differential equations are used. The paper is focused on performance analysis of computing speed and accuracy of field-programmable gate array (FPGA) device, digital signal controller and Power PC microcontroller and results are compared.展开更多
文摘This paper deals with optimization of hard switching commutation mode for high-power, high-frequency consumer applications for selected power transistor. The experimental investigation of suitable settings is outgoing from simulation analysis of hard switching for different transistor structures. For these purposes, the simulation models of power semiconductor switches with high level of validity have been used. After that, the experimental analysis for selected transistor was done with change of parameters that are influencing commutation process of transistor. Target of such kind of analysis was to reach as low switching losses as possible, achieving high power density and efficiency of power system, without utilization of improved switching techniques such as resonant switching. The results confirm that this task is realizable through use of progressive semiconductor devices such as SiC diodes and/or through latest families of MOSFET devices.
文摘The paper deals with the comparison of three different digital devices used for the computing of permanent magnet synchronous motor (PMSM) model. Model is used for virtual high frequency injection method (VHFIM) sensorless control, where injection and acting voltages are virtual ones. For computing the whole PMSM model, differential equations are used. The paper is focused on performance analysis of computing speed and accuracy of field-programmable gate array (FPGA) device, digital signal controller and Power PC microcontroller and results are compared.