Dynamics of a ball moving in gravitational field and colliding with a moving table is studied in this paper. The motion of the limiter is assumed as periodic with piecewise constant velocity—it is assumed that the ta...Dynamics of a ball moving in gravitational field and colliding with a moving table is studied in this paper. The motion of the limiter is assumed as periodic with piecewise constant velocity—it is assumed that the table moves up with a constant velocity and then moves down with another constant velocity.The Poincaré map,describing evolution from an impact to the next impact,is derived and scenarios of transition to chaotic dynamics are investigated analytically and numerically.展开更多
Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links ...Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links and joints. Contrarily, in some manipulation tasks the velocity and stiffness requirements are anisotropic. In such cases, the asymmetric parallel kinematic chain mechanisms may offer advantages. This work objective is to present the synthesis, dynamic modeling and analysis of a 3-dof asymmetric parallel chain mechanism, conceived as a robot manipulator for pick-and-place operations. Firs't, a structural synthesis, resulting in a three translations end-effector, and a kinematic modeling are carried out. Then, the inverse dynamic modeling is developed by employing the virtual work principle. Based on the model equations and on the saturation of the mechanism actuators, a maximum acceleration analysis is performed and shows that although the mechanism has a parallel architecture its actuators influences on the 3-dof are quite decoupled.展开更多
In the production of compression springs,high forming velocities and grades of deformation during winding and setting may induce cracks that can lead to failure causing risks of an accident and damage.The AE(acoustic ...In the production of compression springs,high forming velocities and grades of deformation during winding and setting may induce cracks that can lead to failure causing risks of an accident and damage.The AE(acoustic emission)technology,a non-destructive monitoring method,can detect acoustic signals reflected from cracks.To establish this method in the production of technical springs,it was necessary,to find out whether the AE signal is influenced by material properties,phase fractions distribution from tempered martensite,retained austenite,and microstructure including crystallographic texture.In addition,it was investigated to what extent the detected AE signal can be useful to separate between an actual crack and other material responses.Within an in-situ three-point bending test with the AE technology,macro-and micro-crack-typical AE signals were detected for five different spring steel wires(SH,VDSiCr,and FDSiCr according to EN-10270-1 and EN-10270-2).The relative energy related to the initiation,propagation,and growth of cracks caused by mechanical stress was measured using a piezoelectric sensor.If a crack AE signal appeared for the first time,the bending tests were stopped immediately.The results show that the frequency spectrum combined with the intensity of the acoustic signals generated during crack growth depends on the material properties and the crystallographic texture.Furthermore,it could be shown that it is possible to differentiate between micro-crack-typical AE signals and other signals that result from different material responses.展开更多
文摘Dynamics of a ball moving in gravitational field and colliding with a moving table is studied in this paper. The motion of the limiter is assumed as periodic with piecewise constant velocity—it is assumed that the table moves up with a constant velocity and then moves down with another constant velocity.The Poincaré map,describing evolution from an impact to the next impact,is derived and scenarios of transition to chaotic dynamics are investigated analytically and numerically.
文摘Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links and joints. Contrarily, in some manipulation tasks the velocity and stiffness requirements are anisotropic. In such cases, the asymmetric parallel kinematic chain mechanisms may offer advantages. This work objective is to present the synthesis, dynamic modeling and analysis of a 3-dof asymmetric parallel chain mechanism, conceived as a robot manipulator for pick-and-place operations. Firs't, a structural synthesis, resulting in a three translations end-effector, and a kinematic modeling are carried out. Then, the inverse dynamic modeling is developed by employing the virtual work principle. Based on the model equations and on the saturation of the mechanism actuators, a maximum acceleration analysis is performed and shows that although the mechanism has a parallel architecture its actuators influences on the 3-dof are quite decoupled.
文摘In the production of compression springs,high forming velocities and grades of deformation during winding and setting may induce cracks that can lead to failure causing risks of an accident and damage.The AE(acoustic emission)technology,a non-destructive monitoring method,can detect acoustic signals reflected from cracks.To establish this method in the production of technical springs,it was necessary,to find out whether the AE signal is influenced by material properties,phase fractions distribution from tempered martensite,retained austenite,and microstructure including crystallographic texture.In addition,it was investigated to what extent the detected AE signal can be useful to separate between an actual crack and other material responses.Within an in-situ three-point bending test with the AE technology,macro-and micro-crack-typical AE signals were detected for five different spring steel wires(SH,VDSiCr,and FDSiCr according to EN-10270-1 and EN-10270-2).The relative energy related to the initiation,propagation,and growth of cracks caused by mechanical stress was measured using a piezoelectric sensor.If a crack AE signal appeared for the first time,the bending tests were stopped immediately.The results show that the frequency spectrum combined with the intensity of the acoustic signals generated during crack growth depends on the material properties and the crystallographic texture.Furthermore,it could be shown that it is possible to differentiate between micro-crack-typical AE signals and other signals that result from different material responses.