期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Julolidinyl aza-BODIPYs as NIR-Ⅱ fluorophores for the bioimaging of nanocarriers
1
作者 Chang Liu Yifan Cai +6 位作者 Zichen Zhang Yi Lu Quangang Zhu Haisheng He Zhongjian Chen Weili Zhao Wei Wu 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2024年第7期3155-3168,共14页
The aggregation-caused quenching(ACQ)rationale has been employed to improve the fluorescence imaging accuracy of nanocarriers by precluding free probe-derived interferences.However,its usefulness is undermined by limi... The aggregation-caused quenching(ACQ)rationale has been employed to improve the fluorescence imaging accuracy of nanocarriers by precluding free probe-derived interferences.However,its usefulness is undermined by limited penetration and low spatiotemporal resolution of NIR-Ⅰ(700-900 nm)bioimaging owing to absorption and diffraction by biological tissues and tissue-derived autofluorescence.This study aimed to develop ACQ-based NIR-Ⅱ(1000-1700 nm)probes to further improve the imaging resolution and accuracy.The strategy employed is to install highly planar and electron-rich julolidine into the 3,5-position of aza-BODIPY based on the larger substituent effects.The newly developed probes displayed remarkable photophysical properties,with intense absorption centered at approximately 850 nm and bright emission in the 950-1300 nm region.Compared with the NIR-Ⅰ counterpart P2,the NIR-Ⅱ probes demonstrated superior water sensitivity and quenching stability.ACQ1 and ACQ6 exhibited more promising ACQ effects with absolute fluorescence quenching at water fractions above 40% and higher quenching stability with less than 2.0% fluorescence reillumination in plasma after 24 h of incubation.Theoretical calculations verified that molecular planarity is more important than hydrophobicity for ACQ properties.Additionally,in vivo and ex vivo reillumination studies revealed less than 2.5% signal interference from prequenched ACQ1,in contrast to 15% for P2. 展开更多
关键词 3 5-Julolidinyl Aza-BODIPY NANOCARRIERS Near-infraredⅡ Fluorescence imaging Aggregation-caused quenching Polymeric micelles Polymeric nanoparticles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部