Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature;mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form...Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature;mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging;a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.展开更多
Systematic administration of anti-inflammatory cytokine interleukin 4(IL-4)has been shown to improve recovery after cerebral ischemic stroke.However,whether IL-4 affects neuronal excitability and how IL-4 improves isc...Systematic administration of anti-inflammatory cytokine interleukin 4(IL-4)has been shown to improve recovery after cerebral ischemic stroke.However,whether IL-4 affects neuronal excitability and how IL-4 improves ischemic injury remain largely unknown.Here we report the neuroprotective role of endogenous IL-4 in focal cerebral ischemia-repertusion(I/R)injury.In multi-electrode array(MEA)recordings,IL-4 reduces spontaneous firings and network activities of mouse primary cortical neurons.IL-4 mRNA and protein expressions are upregulated after I/R injury.Genetic deletion of 11-4 gene aggravates I/R injury in vivo and exacerbates oxygen-glucose deprivation(OGD)injury in cortical neurons.Conversely,supplemental IL-4 protects 11-4-/-cortical neurons against OGD injury.Mechanistically,cortical pyramidal and stellate neurons common for ischemic penumbra after I/R injury exhibit intrinsic hyperexcitability and enhanced excitatory synaptic transmissions in Il-4-/-mice.Furthermore,upregulation of Nav1.1 channel,and downregulations of KCa3.1 channel and a6 subunit of GABAA receptors are detected in the cortical tissues and primary cortical neurons from Il-4-/-mice.Taken together,our findings demonstrate that IL-4 deficiency results in neural hyperexcitability and aggravates I/R injury,thus activation of IL-4 signaling may protect the brain against the development of permanent damage and help recover from ischemic injury after stroke.展开更多
The cotton sesquiterpene cyclase, (+)-δ-cadinene synthase.is encoded by a gene family, which can be divided into two subfamilies: CAD1-A and CAD1-C. The gene CAD1-A was isolated from G. arboreum. In situ hybridizatio...The cotton sesquiterpene cyclase, (+)-δ-cadinene synthase.is encoded by a gene family, which can be divided into two subfamilies: CAD1-A and CAD1-C. The gene CAD1-A was isolated from G. arboreum. In situ hybridization performed on seven-day-old cotton seedlings localized transcripts of both the CAD1-A and CAD1-C mainly in lateral root primordium and apical ground meristem, vascular tissues of emerging lateral roots, and also in procambium and some subepidermal cells of the hypocotyl. The CAD1-A promoter showed a similar tissue-specificity in transgenic tobacco plants. Histochemistry showed occurrence of sesquiterpene aldehydes in outer cells of the lateral root tips, as well as in pigment glands. The CAD1 gene expression in G. arboreum seedlings and the spatial pattern of sesquiterpene biosynthesis constitute a chemical defense machinery in cotton seedlings.展开更多
The epidermal growth factor receptor(EGFR)is one of the most well-studied signaling pathways in cancer progression.As a result,numerous therapeutics including small-molecule inhibitors and monoclonal antibodies have b...The epidermal growth factor receptor(EGFR)is one of the most well-studied signaling pathways in cancer progression.As a result,numerous therapeutics including small-molecule inhibitors and monoclonal antibodies have been developed to target this critical oncogenic driver.Several of these EGFR inhibitors(EGFRi)have been evaluated in metastatic breast cancer,as high-level EGFR expression in primary tumors correlates with the highly aggressive basal-like phenotype and predicts for poor patient prognosis.Surprisingly,these trials have been unanimously unsuccessful at improving patient outcomes.Numerous factors,such as lack of proper patient selection may have contributed to the failure of these trials.However,recent findings suggest that there are fundamental changes in EGFR signaling that take place during primary tumor invasion,dissemination and ultimate metastasis of breast cancer cells.Herein,we review the outcomes of EGFR-targeted clinical trials in breast cancer and explore our current understanding of EGFR signaling within primary mammary tumors and how these events are altered in the metastatic setting.Overall,we put forth the hypothesis that fundamental changes in EGFR signaling between primary and metastatic tumors,a process we term the‘EGFR paradox,’contribute to the clinically observed inherent resistance to EGFRi.Furthermore,this hypothesis introduces the possibility of utilizing EGFR agonism as a potential therapeutic approach for the treatment of metastatic breast cancer.展开更多
基金Indiana University Collaborative Research GrantIndiana Clinical and Translational Sciences Institute,No.NIH UL1TR001108,No.NIH R01 AR069657,No.NIH R01AR060863 and No.NIH R01AG060621
文摘Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature;mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging;a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.
基金supported by research grants from the National Natural Science Foundation of China(81573410)the National Science and Technology Major Project(2018ZX09711001-004006,China)the Natural Sciences Foundation of Shandong Province(ZR2015QL008,China)awarded to Kewei Wang
文摘Systematic administration of anti-inflammatory cytokine interleukin 4(IL-4)has been shown to improve recovery after cerebral ischemic stroke.However,whether IL-4 affects neuronal excitability and how IL-4 improves ischemic injury remain largely unknown.Here we report the neuroprotective role of endogenous IL-4 in focal cerebral ischemia-repertusion(I/R)injury.In multi-electrode array(MEA)recordings,IL-4 reduces spontaneous firings and network activities of mouse primary cortical neurons.IL-4 mRNA and protein expressions are upregulated after I/R injury.Genetic deletion of 11-4 gene aggravates I/R injury in vivo and exacerbates oxygen-glucose deprivation(OGD)injury in cortical neurons.Conversely,supplemental IL-4 protects 11-4-/-cortical neurons against OGD injury.Mechanistically,cortical pyramidal and stellate neurons common for ischemic penumbra after I/R injury exhibit intrinsic hyperexcitability and enhanced excitatory synaptic transmissions in Il-4-/-mice.Furthermore,upregulation of Nav1.1 channel,and downregulations of KCa3.1 channel and a6 subunit of GABAA receptors are detected in the cortical tissues and primary cortical neurons from Il-4-/-mice.Taken together,our findings demonstrate that IL-4 deficiency results in neural hyperexcitability and aggravates I/R injury,thus activation of IL-4 signaling may protect the brain against the development of permanent damage and help recover from ischemic injury after stroke.
文摘The cotton sesquiterpene cyclase, (+)-δ-cadinene synthase.is encoded by a gene family, which can be divided into two subfamilies: CAD1-A and CAD1-C. The gene CAD1-A was isolated from G. arboreum. In situ hybridization performed on seven-day-old cotton seedlings localized transcripts of both the CAD1-A and CAD1-C mainly in lateral root primordium and apical ground meristem, vascular tissues of emerging lateral roots, and also in procambium and some subepidermal cells of the hypocotyl. The CAD1-A promoter showed a similar tissue-specificity in transgenic tobacco plants. Histochemistry showed occurrence of sesquiterpene aldehydes in outer cells of the lateral root tips, as well as in pigment glands. The CAD1 gene expression in G. arboreum seedlings and the spatial pattern of sesquiterpene biosynthesis constitute a chemical defense machinery in cotton seedlings.
基金This work was supported in part by the National Institutes of Health(R00CA166140)and the METavivor Foundation.
文摘The epidermal growth factor receptor(EGFR)is one of the most well-studied signaling pathways in cancer progression.As a result,numerous therapeutics including small-molecule inhibitors and monoclonal antibodies have been developed to target this critical oncogenic driver.Several of these EGFR inhibitors(EGFRi)have been evaluated in metastatic breast cancer,as high-level EGFR expression in primary tumors correlates with the highly aggressive basal-like phenotype and predicts for poor patient prognosis.Surprisingly,these trials have been unanimously unsuccessful at improving patient outcomes.Numerous factors,such as lack of proper patient selection may have contributed to the failure of these trials.However,recent findings suggest that there are fundamental changes in EGFR signaling that take place during primary tumor invasion,dissemination and ultimate metastasis of breast cancer cells.Herein,we review the outcomes of EGFR-targeted clinical trials in breast cancer and explore our current understanding of EGFR signaling within primary mammary tumors and how these events are altered in the metastatic setting.Overall,we put forth the hypothesis that fundamental changes in EGFR signaling between primary and metastatic tumors,a process we term the‘EGFR paradox,’contribute to the clinically observed inherent resistance to EGFRi.Furthermore,this hypothesis introduces the possibility of utilizing EGFR agonism as a potential therapeutic approach for the treatment of metastatic breast cancer.