The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing th...The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing the SCR from 2.0 to 59.5℃/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780μm to less than about 14.6 and 460μm,respectively.Augment-ing the SCR also enhanced the microstructural homogeneity,decreased the porosity content(by 50%),and increased the matrix hardness(by 36%).These microstructural changes enhanced the tribological behavior.For instance,under the applied pressure of 0.5 MPa,an in-crease in the SCR from 2.0 to 59.5℃/s decreased the wear rate and the average friction coefficient of the alloy by 57%and 23%,respect-ively.The wear mechanism was also changed from the severe delamination,adhesion,and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample.展开更多
Sugar palm(Arenga pinnata)starch is considered an important renewable,biodegradable,and eco-friendly polymer,which is derived from agricultural by-products and residues,with great potential for the development of bioc...Sugar palm(Arenga pinnata)starch is considered an important renewable,biodegradable,and eco-friendly polymer,which is derived from agricultural by-products and residues,with great potential for the development of biocomposite materials.This research was aimed at investigating the development of TPS biocomposites from A.pinnata palm starch using an extrusion process.Palm starch,glycerol,and stearic acid were extruded in a twin-screw extruder.Scanning electron microscopy(SEM)analysis of TPS showed that the starch granules were damaged and gelatinized in the extrusion process.The density of TPS was 1.3695 g/mL,lower than that of palm starch,and the addition of stearic acid resulted in increased TPS density.X-ray diffraction(XRD)results showed that palm starch had a C-type pattern crystalline structure.The tensile strength,elongation at break,and modulus of elasticity of TPS were 7.19 MPa,33.95%,and 0.56 GPa,respectively.The addition of stearic acid reduced the tensile strength,elongation at break and modulus of elasticity of TPS.The rheological properties,i.e.,melt flow rate(MFR)and viscosity of TPS,were 7.13 g/10 min and 2482.19 Pa.s,respectively.The presence of stearic acid in TPS resulted in increased MFR and decreased viscosity values.The peak gelatinization temperature of A.pinnata palm starch was 70°C,while Tg of TPS was 65°C.The addition of stearic acid reduced the Tg of TPS.The thermogravimetric analysis(TGA)analysis showed that the addition of glycerol and stearic acid decreased the thermal stability,but extended the temperature range of thermal degradation.TPS derived from A.pinnata palm starch by extrusion method has the potential to be applied in industrial practice as a promising raw material for manufacturing bio-based packaging as a sustainable and green alternative to petroleum-based plastics.展开更多
The properties and applications of ZrO_2-Y_2O_3 material used as oxygen sensor were studied.Oxygen sensors are studied by X-ray diffraction technique,microstructure determination and thermal shock resistance test,and ...The properties and applications of ZrO_2-Y_2O_3 material used as oxygen sensor were studied.Oxygen sensors are studied by X-ray diffraction technique,microstructure determination and thermal shock resistance test,and are tested on the spot.Oxygen sensors made from the sintered dense ZrO_2 stabilized by Y_2O_3 can be used to measure the oxygen concentration in molten steel at 1600℃.The data obtained are stable and reliable, and the thermal shock resistance is high.The oxygen concentration is measured at(1~150)×10^(-4)% with re- sponse time of 2~3s.展开更多
Samples of medium carbon steel were examined after heating between 900℃ - 980℃ and soaked for 45 minutes in a muffle furnace before quenching in palm oil and water separately. The mechanical behavior of the samples ...Samples of medium carbon steel were examined after heating between 900℃ - 980℃ and soaked for 45 minutes in a muffle furnace before quenching in palm oil and water separately. The mechanical behavior of the samples was investigated using universal tensile testing machine for tensile test and Vickers pyramid method for hardness testing. The microstructure of the quenched samples was studied using optical microscope. The tensile strength and hardness values of the quenched samples were relatively higher than those of the ascast samples, suggesting improved mechanical properties. However, samples quenched in palm oil displayed better properties compared with that of water-quenched samples. This behavior was traced to the fact that the carbon particles in palm oil quenched samples were more uniform and evenly distributed, indicating the formation of more pearlite structure, than those quenched in water and the as-received samples.展开更多
The Obrochishte deposit located in the Republic of Bulgaria has considerable reserves of relatively poor carbonate manganese ore. At the same time, in the country there are operative outputs for the production of sulp...The Obrochishte deposit located in the Republic of Bulgaria has considerable reserves of relatively poor carbonate manganese ore. At the same time, in the country there are operative outputs for the production of sulphuric acid where vanadium catalyst is deactivated and discharged, polluting the environment. The utilization of these materials requires their consolidation to proper sizes with regard to the next processing, as the most suitable method for joint consolidation is agglomeration. The present work explores the preliminary calculations for obtaining agglomerate and obtaining an alloy with high and low carbon content, through carbothermic and aluminothermic agglomerate reduction.展开更多
One-dimensional CdS nanocrystals have been prepared by solvothermal method using cadmium acetate as a cadmium precursor, elemental sulfur and Na2S, as a sulfur precursor, and ethylenediamine as a solvent at 150℃ for ...One-dimensional CdS nanocrystals have been prepared by solvothermal method using cadmium acetate as a cadmium precursor, elemental sulfur and Na2S, as a sulfur precursor, and ethylenediamine as a solvent at 150℃ for 5 h. The nanocrystals were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Vis absorption spectroscopy. XRD patterns indicate that both Na2S and elemental sulfur as the sulfur precursor result in CdS nanorods with wutzite phase (hexagonal structure). SEM and TEM images show that diameter of CdS nanorods can be decreased using Na2S instead of elemental sulfur. For the growth of CdS nanorods, a mechanism has been proposed. Uv-Vis absorption of CdS nanorods (sulfur precursor: Na2S) was shown blue shift to 485 nm due to the quantum size effect.展开更多
The mechanical response of a 17%(volume fraction) silicon carbide particles reinforced 2124 Al composite prepared by powder metallurgy techniques was studied by altering the matrix strength with different heat treatme...The mechanical response of a 17%(volume fraction) silicon carbide particles reinforced 2124 Al composite prepared by powder metallurgy techniques was studied by altering the matrix strength with different heat treatments. The fracture mechanisms and the deformation microstructure were examined by scanning electron microscopy. The results show that matrix strength appears to play an important role in influcing the behaviour of the composite under hardness and tensile loading conditions and also fracture mechanisms.The high matrix strength results in a larger decrease in yield strength due to the increasing damage probability. The tensile yield strength values decrease under peak aged and overaged condition whereas under the solutinized condition the opposite effect can be seen.展开更多
The effects of rod falling and moving, external flow field, boiling film and radiation were investigated on fluid flow and heat transfer of AISI 4140 steel horizontal rod during direct quenching by mathematical modeli...The effects of rod falling and moving, external flow field, boiling film and radiation were investigated on fluid flow and heat transfer of AISI 4140 steel horizontal rod during direct quenching by mathematical modeling. The flow field and heat transfer in quenching tank were simulated by computational fluid dynamics (CFD) method considering falling and moving of rods during process. Therefore, modeling of flow field was done by a fixed-mesh method for general moving objects equations, and then, energy equation was solved with a numerical approach so that effeet of boiling film heat flux was considered as a source term in energy equation for solid-liquid boundary. Simulated results were verified by comparing with published and experimental data and there was a good agreement between them. Also, the effects of external forced flow and film boiling were investigated on heat flux output, temperature distribution and heat transfer coefficient of rod. Also simulated results determined optimum quenching time for this process.展开更多
文摘The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing the SCR from 2.0 to 59.5℃/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780μm to less than about 14.6 and 460μm,respectively.Augment-ing the SCR also enhanced the microstructural homogeneity,decreased the porosity content(by 50%),and increased the matrix hardness(by 36%).These microstructural changes enhanced the tribological behavior.For instance,under the applied pressure of 0.5 MPa,an in-crease in the SCR from 2.0 to 59.5℃/s decreased the wear rate and the average friction coefficient of the alloy by 57%and 23%,respect-ively.The wear mechanism was also changed from the severe delamination,adhesion,and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample.
基金from The Hitachi Global Foundation Asia Innovation Award 2020.Also,the authors thank the facilities,scientific and technical support from Advanced Characterization Laboratories Serpong and Cibinong,National Research and Innovation Institute through E-Layanan Sains,Badan Riset dan Inovasi Nasional(BRIN).
文摘Sugar palm(Arenga pinnata)starch is considered an important renewable,biodegradable,and eco-friendly polymer,which is derived from agricultural by-products and residues,with great potential for the development of biocomposite materials.This research was aimed at investigating the development of TPS biocomposites from A.pinnata palm starch using an extrusion process.Palm starch,glycerol,and stearic acid were extruded in a twin-screw extruder.Scanning electron microscopy(SEM)analysis of TPS showed that the starch granules were damaged and gelatinized in the extrusion process.The density of TPS was 1.3695 g/mL,lower than that of palm starch,and the addition of stearic acid resulted in increased TPS density.X-ray diffraction(XRD)results showed that palm starch had a C-type pattern crystalline structure.The tensile strength,elongation at break,and modulus of elasticity of TPS were 7.19 MPa,33.95%,and 0.56 GPa,respectively.The addition of stearic acid reduced the tensile strength,elongation at break and modulus of elasticity of TPS.The rheological properties,i.e.,melt flow rate(MFR)and viscosity of TPS,were 7.13 g/10 min and 2482.19 Pa.s,respectively.The presence of stearic acid in TPS resulted in increased MFR and decreased viscosity values.The peak gelatinization temperature of A.pinnata palm starch was 70°C,while Tg of TPS was 65°C.The addition of stearic acid reduced the Tg of TPS.The thermogravimetric analysis(TGA)analysis showed that the addition of glycerol and stearic acid decreased the thermal stability,but extended the temperature range of thermal degradation.TPS derived from A.pinnata palm starch by extrusion method has the potential to be applied in industrial practice as a promising raw material for manufacturing bio-based packaging as a sustainable and green alternative to petroleum-based plastics.
文摘The properties and applications of ZrO_2-Y_2O_3 material used as oxygen sensor were studied.Oxygen sensors are studied by X-ray diffraction technique,microstructure determination and thermal shock resistance test,and are tested on the spot.Oxygen sensors made from the sintered dense ZrO_2 stabilized by Y_2O_3 can be used to measure the oxygen concentration in molten steel at 1600℃.The data obtained are stable and reliable, and the thermal shock resistance is high.The oxygen concentration is measured at(1~150)×10^(-4)% with re- sponse time of 2~3s.
文摘Samples of medium carbon steel were examined after heating between 900℃ - 980℃ and soaked for 45 minutes in a muffle furnace before quenching in palm oil and water separately. The mechanical behavior of the samples was investigated using universal tensile testing machine for tensile test and Vickers pyramid method for hardness testing. The microstructure of the quenched samples was studied using optical microscope. The tensile strength and hardness values of the quenched samples were relatively higher than those of the ascast samples, suggesting improved mechanical properties. However, samples quenched in palm oil displayed better properties compared with that of water-quenched samples. This behavior was traced to the fact that the carbon particles in palm oil quenched samples were more uniform and evenly distributed, indicating the formation of more pearlite structure, than those quenched in water and the as-received samples.
文摘The Obrochishte deposit located in the Republic of Bulgaria has considerable reserves of relatively poor carbonate manganese ore. At the same time, in the country there are operative outputs for the production of sulphuric acid where vanadium catalyst is deactivated and discharged, polluting the environment. The utilization of these materials requires their consolidation to proper sizes with regard to the next processing, as the most suitable method for joint consolidation is agglomeration. The present work explores the preliminary calculations for obtaining agglomerate and obtaining an alloy with high and low carbon content, through carbothermic and aluminothermic agglomerate reduction.
文摘One-dimensional CdS nanocrystals have been prepared by solvothermal method using cadmium acetate as a cadmium precursor, elemental sulfur and Na2S, as a sulfur precursor, and ethylenediamine as a solvent at 150℃ for 5 h. The nanocrystals were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Vis absorption spectroscopy. XRD patterns indicate that both Na2S and elemental sulfur as the sulfur precursor result in CdS nanorods with wutzite phase (hexagonal structure). SEM and TEM images show that diameter of CdS nanorods can be decreased using Na2S instead of elemental sulfur. For the growth of CdS nanorods, a mechanism has been proposed. Uv-Vis absorption of CdS nanorods (sulfur precursor: Na2S) was shown blue shift to 485 nm due to the quantum size effect.
文摘The mechanical response of a 17%(volume fraction) silicon carbide particles reinforced 2124 Al composite prepared by powder metallurgy techniques was studied by altering the matrix strength with different heat treatments. The fracture mechanisms and the deformation microstructure were examined by scanning electron microscopy. The results show that matrix strength appears to play an important role in influcing the behaviour of the composite under hardness and tensile loading conditions and also fracture mechanisms.The high matrix strength results in a larger decrease in yield strength due to the increasing damage probability. The tensile yield strength values decrease under peak aged and overaged condition whereas under the solutinized condition the opposite effect can be seen.
文摘The effects of rod falling and moving, external flow field, boiling film and radiation were investigated on fluid flow and heat transfer of AISI 4140 steel horizontal rod during direct quenching by mathematical modeling. The flow field and heat transfer in quenching tank were simulated by computational fluid dynamics (CFD) method considering falling and moving of rods during process. Therefore, modeling of flow field was done by a fixed-mesh method for general moving objects equations, and then, energy equation was solved with a numerical approach so that effeet of boiling film heat flux was considered as a source term in energy equation for solid-liquid boundary. Simulated results were verified by comparing with published and experimental data and there was a good agreement between them. Also, the effects of external forced flow and film boiling were investigated on heat flux output, temperature distribution and heat transfer coefficient of rod. Also simulated results determined optimum quenching time for this process.