Thermal processes on the Tibetan Plateau(TP)influence atmospheric conditions on regional and global scales.Given this,previous work has shown that soil moisture−driven surface flux variations feed back onto the atmosp...Thermal processes on the Tibetan Plateau(TP)influence atmospheric conditions on regional and global scales.Given this,previous work has shown that soil moisture−driven surface flux variations feed back onto the atmosphere.Whilst soil moisture is a source of atmospheric predictability,no study has evaluated soil moisture−atmosphere coupling on the TP in general circulation models(GCMs).In this study,we use several analysis techniques to assess soil moisture−atmosphere coupling in CMIP6 simulations including:instantaneous coupling indices;analysis of flux and atmospheric behaviour during dry spells;and a quantification of the preference for convection over drier soils.Through these metrics we partition feedbacks into their atmospheric and terrestrial components.Consistent with previous global studies,we conclude substantial inter-model differences in the representation of soil moisture−atmosphere coupling,and that most models underestimate such feedbacks.Focusing on dry spell analysis,most models underestimate increased sensible heat during periods of rainfall deficiency.For example,the model-mean bias in anomalous sensible heat flux is 10 W m−2(≈25%)smaller compared to observations.Deficient dry-spell sensible heat fluxes lead to a weaker atmospheric response.We also find that most GCMs fail to capture the negative feedback between soil moisture and deep convection.The poor simulation of feedbacks in CMIP6 experiments suggests that forecast models also struggle to exploit soil moisture−driven predictability.To improve the representation of land−atmosphere feedbacks requires developments in not only atmospheric modelling,but also surface processes,as we find weak relationships between rainfall biases and coupling indexes.展开更多
The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation. It has been argued in the ...The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation. It has been argued in the literature that during the 20th century the Walker circulation weakened, and that this weakening was attributable to anthropogenic climate change. By using updated observations, we show that there has been a rapid interdecadal enhancement of the Walker circulation since the late 1990s. Associated with this enhancement is enhanced precipitation in the tropical western Pacific, anomalous westerlies in the upper troposphere, descent in the central and eastern tropical Pacific, and anomalous surface easterlies in the western and central tropical Pacific. The characteristics of associated oceanic changes are a strengthened thermocline slope and an enhanced zonal SST gradient across the tropical Pacific. Many characteristics of these changes are similar to those associated with the mid-1970s climate shift with an opposite sign. We also show that the interdecadal variability of the Walker circulation in the tropical Pacific is inversely correlated to the interdecadal variability of the zonal circulation in the tropical Atlantic. An enhancement of the Walker circulation in the tropical Pacific is associated with a weakening zonal circulation in the tropical Atlantic and vise versa, implying an inter-Atlantic-Pacific connection of the zonal overturning circulation variation. Whether these recent changes will be sustained is not yet clear, but our research highlights the importance of understanding the interdecadal variability, as well as the long-term trends, that influence tropical circulation.展开更多
Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the...Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the TP to the east. TPVs are known to be one of the main precipitation-bearing systems on the TP and moving-off TPVs have been associated with heavy precipitation and flooding downstream of the TP (e.g., in Sichuan province or over the Yangtze River Valley). Identifying and tracking TPVs is difficult because of their comparatively small horizontal extent (400-800 kin) and the limited availability of soundings over the TP, which in turn constitutes a challenge for short-term predictions of TPV-related impacts and for the climatological study of TPVs. In this study, (i) manual tracking (MT) results using radiosonde data from a network over and downstream of the TP are compared with (ii) results obtained by an automated tracking (AT) algorithm applied to ERA-Interim data. Ten MT-TPV cases are selected based on method (i) and matched to and compared with the corresponding AT-TPVs identified with method (ii). Conversely, ten AT-TPVs are selected and compared with the corresponding MT-TPVs. In general, the comparison shows good results in cases where the underlying data are in good agreement, but considerable differences are also seen in some cases and explained in terms of differences in the tracking methods, data availability/coverage and disagreement between sounding and ERA-Interim data. Recommendations are given for future efforts in TPV detection and tracking, including in an operational weather forecasting context.展开更多
Predicting monsoon onset is crucial for agriculture and socioeconomic planning in countries where millions rely on the timely arrival of monsoon rains for their livelihoods. In this study we demonstrate useful skill i...Predicting monsoon onset is crucial for agriculture and socioeconomic planning in countries where millions rely on the timely arrival of monsoon rains for their livelihoods. In this study we demonstrate useful skill in predicting year-to-year variations in South China Sea summer monsoon onset at up to a three-month lead time using the GloSea5 seasonal forecasting system. The main source of predictability comes from skillful prediction of Pacific sea surface temperatures associated with El Ni?no and La Ni?na. The South China Sea summer monsoon onset is a known indicator of the broadscale seasonal transition that represents the first stage of the onset of the Asian summer monsoon as a whole. Subsequent development of rainfall across East Asia is influenced by subseasonal variability and synoptic events that reduce predictability, but interannual variability in the broadscale monsoon onset for East Asian summer monsoon still provides potentially useful information for users about possible delays or early occurrence of the onset of rainfall over East Asia.展开更多
Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading mont...Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and sevenmonth lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960 2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.展开更多
This study investigated the relationship be- tween the asymmetry in the duration of El Nifio and La Nina and the length of their decaying phases. The results suggested that the duration asymmetry comes from the long d...This study investigated the relationship be- tween the asymmetry in the duration of El Nifio and La Nina and the length of their decaying phases. The results suggested that the duration asymmetry comes from the long decaying ENSO cases rather than the short decaying ones. The evolutions of short decaying El Nino and La Nina are approximately a mirror image with a rapid decline in the following summer for the warm and cold events. However, a robust asymmetry was found in long decaying cases, with a prolonged and re-intensified La Nina in the following winter. The asymmetry for long decaying cases starts from the westward extension of the zonal wind anomalies in a mature winter, and is further contributed to by the air-sea interaction over the tropical Pacific in the following seasons.展开更多
The sensitivity of the representation of the global monsoon annual cycle to horizontal resolution is compared in three AGCMs: the Met Office Unified Model-Global Atmosphere 3.0; the Meteorological Research Institute ...The sensitivity of the representation of the global monsoon annual cycle to horizontal resolution is compared in three AGCMs: the Met Office Unified Model-Global Atmosphere 3.0; the Meteorological Research Institute AGCM3; and the Global High Resolution AGCM from the Geophysical Fluid Dynamics Laboratory. For each model, we use two horizon- tal resolution configurations for the period 1998-2008. Increasing resolution consistently improves simulated precipitation and low-level circulation of the annual mean and the first two annual cycle modes, as measured by the pattern correla- tion coefficient and equitable threat score. Improvements in simulating the summer monsoon onset and withdrawal are region-dependent. No consistent response to resolution is found in simulating summer monsoon retreat. Regionally, in- creased resolution reduces the positive bias in simulated annual mean precipitation, the two annual-cycle modes over the West African monsoon and Northwestern Pacific monsoon. An overestimation of the solstitial mode and an underestimation of the equinoctial asymmetric mode of the East Asian monsoon axe reduced in all high-resolution configurations. Systematic errors exist in lower-resolution models for simulating the onset and withdrawal of the summer monsoon. Higher resolution models consistently improve the early summer monsoon onset over East Asia and West Africa, but substantial differences exist in the responses over the Indian monsoon region, where biases differ across the three low-resolution AGCMs. This study demonstrates the importance of a multi-model comparison when examining the added value of resolution and the importance of model physical parameterizations for simulation of the Indian monsoon.展开更多
Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yan...Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yangtze River Basin(YRB).By aggregating daily and monthly precipitation over river basins across Asia,it is shown that the YRB is one of the areas that was particularly affected.June and July 2020 rainfall was higher than in the previous 20 years,and the YRB experienced anomalously high rainfall across most of its sub-basins.YRB discharge also attained levels not seen since 1998/1999.An automated method detecting the daily position of the East Asian Summer Monsoon Front(EASMF)is applied to show that the anomalously high YRB precipitation was associated with a halted northward progression of the EASMF and prolonged mei-yu conditions over the YRB lasting more than one month.Two 5-day heavy-precipitation episodes(12−16 June and 4−8 July 2020)are selected from this period for dynamical characterization,including Lagrangian trajectory analysis.Particular attention is devoted to the dynamics of the airstreams converging at the EASMF.Both episodes display heavy precipitation and convergence of monsoonal and subtropical air masses.However,clear differences are identified in the upper-level flow pattern,substantially affecting the balance of airmass advection towards the EASMF.This study contextualizes heavy precipitation in Asia in summer 2020 and showcases several analysis tools developed by the authors for the study of such events.展开更多
The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characteriz...The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characterized by increases in HDE frequency and duration over most of China, with relatively large increases over southeastern China(SEC), northern China(NC), and northeastern China(NEC). The frequency of HDEs averaged over China in the present day(PD,1994–2011) is double that in the early period(EP, 1964–81);the duration of HDEs increases by 60%. Climate experiments with the Met Office Unified Model(MetUM-GOML2) are used to estimate the contributions of anthropogenic forcing to HDE decadal changes over China. Anthropogenic forcing changes can explain 60%–70% of the observed decadal changes,suggesting an important anthropogenic influence on HDE changes over China across the mid-1990s. Single-forcing experiments indicate that the increase in greenhouse gas(GHG) concentrations dominates the simulated decadal changes,increasing the frequency and duration of HDEs throughout China. The change in anthropogenic aerosol(AA) emissions significantly decreases the frequency and duration of HDEs over SEC and NC, but the magnitude of the decrease is much smaller than the increase induced by GHGs. The changes in HDEs in response to anthropogenic forcing are mainly due to the response of climatological mean surface air temperatures. The contributions from changes in variability and changes in climatological mean soil moisture and evapotranspiration are relatively small. The physical processes associated with the response of HDEs to GHG and AA changes are also revealed.展开更多
The East Asian summer monsoon(EASM)profoundly influences the hydroclimate,ecosystems,and water resources of a densely populated region in Asia.Anomalous EASM can lead to floods,droughts,significant economic losses,and...The East Asian summer monsoon(EASM)profoundly influences the hydroclimate,ecosystems,and water resources of a densely populated region in Asia.Anomalous EASM can lead to floods,droughts,significant economic losses,and social disruption in East Asia and Southeast Asia.Unlike the Indian and African monsoons,the EASM is shaped by both tropical and extratropical climate systems,including tropical oceanic modes,cross-equatorial airflows,the Madden-Julian Oscillation,the thermal condition of the Tibetan Plateau,the South Asia High,and the mid-latitude westerly jet.展开更多
The springtime persistent rainfall(SPR)is the major rainy period before the onset of summer monsoon in East Asia,which profoundly affects the regional and even global hydrological cycle.Despite the great importance of...The springtime persistent rainfall(SPR)is the major rainy period before the onset of summer monsoon in East Asia,which profoundly affects the regional and even global hydrological cycle.Despite the great importance of the mechanical and thermal effects of the Tibetan Plateau(TP)large-scale orography on the formation of SPR,the impact of small-scale orography over the TP remains poorly understood.Here we show that upward-propagating orographic gravity waves(OGWs),which occur as the subtropical westerlies interact with the TP's small-scale orography,contribute importantly to the SPR.The breaking of OGWs induces a large zonal wave drag in the middle troposphere,which drives a meridional circulation across the TP.The rising branch of the meridional circulation acts to lower the pressure and increase the meridional pressure gradient to the south of the TP by dynamically pumping the lower-tropospheric air upwards.The southwesterly monsoonal flow on the southeastern flank of the TP thus intensifies and transports more water vapor to East Asia,resulting in an enhancement of the SPR.This finding helps more completely understand the impacts of TP's multiscale orography on the SPR and provides a new perspective on the westerly-monsoon synergy in East Asia.展开更多
利用英国Hadley中心QUMP模式(Quantifying Uncertainties in Model Projections)集合的5组敏感性试验产生的全球气候背景场驱动区域气候模拟系统PRECIS(Providing Regional Climates for Impacts Studies)产生的降尺度数据,分析PRE...利用英国Hadley中心QUMP模式(Quantifying Uncertainties in Model Projections)集合的5组敏感性试验产生的全球气候背景场驱动区域气候模拟系统PRECIS(Providing Regional Climates for Impacts Studies)产生的降尺度数据,分析PRECIS对中国地面气温变化的模拟能力,同时对SRES A1B温室气体排放情景下21世纪中期(2021-2050年)中国区域的温度做出预估。模拟能力分析结果显示:PRECIS在5组背景场驱动下都可以较好地模拟出气候基准时段(1961-1900年)中国区域气温的年变化和时空分布特征,但存在暖偏差,高敏感度模拟实验的暖偏差幅度要大于中低敏感度。预估结果显示:5组敏感性试验降尺度模拟的温度均呈增加趋势,其中最低温度的变暖幅度高于平均温度和最高温度。高敏感度试验Q10模拟的升温幅度介于低敏感度模拟和中敏感度模拟之间,其他敏感性试验表现出高敏感度模拟的升温幅度高于中敏感度模拟,而中敏感度模拟高于低敏感度模拟。从模拟的升温空间分布上看,西北地区升温幅度最显著,可达2.08-2.61°C,华南地区升温幅度相对较小,为1.33-1.84°C,但不同敏感度模拟的升温幅度具有一定的区域差异。展开更多
This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indic...This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indicate an abrupt increase in summer mean surface air temperature (SAT) over Northeast Asia since the mid-1990s. Accompanying this abrupt surface wanning, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature (Tmax), daily minimum temperature (Train), annual hottest day temperature (TXx), and annual warmest night temperature (TNx) were observed. There were also increases in the frequency of summer days (SU) and tropical nights (TR). Atmospheric general circulation model experiments forced by changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gas (GHG) concentrations, and anthropogenic aerosol (AA) forcing, relative to the period 1964- 93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes, although the abrupt decrease in precipitation since the mid-1990s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA (through aerosol- radiation and aerosol-cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere-land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply that the abrupt summer surface warming and increases in hot temperature extremes over Northeast Asia since the mid-1990s will probably sustain in the next few decades as GHG concentrations continue to increase and AA precursor emissions over both North America and Europe continue to decrease.展开更多
Anthropogenic climate change is expected to strengthen the vertical wind shears at aircraft cruising altitudes within the atmospheric jet streams. Such a strengthening would increase the prevalence of the shear instab...Anthropogenic climate change is expected to strengthen the vertical wind shears at aircraft cruising altitudes within the atmospheric jet streams. Such a strengthening would increase the prevalence of the shear instabilities that generate clear-air turbulence. Climate modelling studies have indicated that the amount of moderate-or-greater clear-air turbulence on transatlantic flight routes in winter will increase significantly in future as the climate changes. However,the individual responses of light,moderate,and severe clear-air turbulence have not previously been studied,despite their importance for aircraft operations. Here,we use climate model simulations to analyse the transatlantic wintertime clear-air turbulence response to climate change in five aviation-relevant turbulence strength categories. We find that the probability distributions for an ensemble of 21 clear-air turbulence diagnostics generally gain probability in their right-hand tails when the atmospheric carbon dioxide concentration is doubled. By converting the diagnostics into eddy dissipation rates,we find that the ensembleaverage airspace volume containing light clear-air turbulence increases by 59%(with an intra-ensemble range of 43%–68%),light-to-moderate by 75%(39%–96%),moderate by 94%(37%–118%),moderate-to-severe by 127%(30%–170%),and severe by 149%(36%–188%). These results suggest that the prevalence of transatlantic wintertime clear-air turbulence will increase significantly in all aviation-relevant strength categories as the climate changes.展开更多
This paper highlights some theoretical aspects of potential vorticity(PV) and discusses some of the insights the PV perspective has given us. The topics covered include the nature of PV, its controlling role in the ...This paper highlights some theoretical aspects of potential vorticity(PV) and discusses some of the insights the PV perspective has given us. The topics covered include the nature of PV, its controlling role in the symmetric stability of the atmosphere, its inversion to give the flow field, Rossby waves and their coupling to give baroclinic instability, PV and midlatitude weather systems and, finally, insights into tropical motions.展开更多
In this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an e...In this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an ensemble of integrations by an atmospheric general circulation model (AGCM) forced with the global observed SSTs. We focused on the interannual variability of AO/AAO, which is dominated by internal atmospheric variability. In comparison with previous observed results, the AO/AAO in internal atmospheric variability bear some similar characteristics, but exhibit a much clearer spatial structure: significant correlation between the North Pacific and North Atlantic centers of action, much stronger and more significant associated precipitation anomalies, and the meridional displacement of upper-tropospheric westerly jet streams in the Northern/Southern Hemisphere. In addition, we examined the relationship between the North Atlantic Oscillation (NAO)/AO and East Asian winter monsoon (EAWM). It has been shown that in the internal atmospheric variability, the EAWM variation is significantly related to the NAO through upper-tropospheric atmospheric teleconnection patterns.展开更多
Changes in monsoon precipitation have profound social and economic impacts as more than two-thirds of the world’s population lives in monsoon regions.Observations show a significant reduction in global land monsoon p...Changes in monsoon precipitation have profound social and economic impacts as more than two-thirds of the world’s population lives in monsoon regions.Observations show a significant reduction in global land monsoon precipitation during the second half of the 20 th century.Understanding the cause of this change,especially possible anthropogenic origins,is important.Here,we compare observed changes in global land monsoon precipitation during 1948–2005 with those simulated by 5 global climate models participating in the Coupled Model Inter-comparison Project-phase 5(CMIP5)under different external forcings.We show that the observed drying trend is consistent with the model simulated response to anthropogenic forcing and to anthropogenic aerosol forcing in particular.We apply the optimal fingerprinting method to quantify anthropogenic influences on precipitation and find that anthropogenic aerosols may have contributed to 102%(62–144%for the 5–95%confidence interval)of the observed decrease in global land monsoon precipitation.A moisture budget analysis indicates that the reduction in precipitation results from reduced vertical moisture advection in response to aerosol forcing.Since much of the monsoon regions,such as India and China,have been experiencing rapid developments with increasing aerosol emissions in the past decedes,our results imply a further reduction in monsoon precipitation in these regions in the future if effective mitigations to reduce aerosol emissions are not deployed.The observed decline of aerosol emission in China since 2006 helps to alleviate the reducing trend of monsoon precipiptaion.展开更多
基金supported by the UK-China Research Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fundsupported by the Natural Environment Research Council as part of the NC-International programme (NE/X006247/1) delivering National Capability
文摘Thermal processes on the Tibetan Plateau(TP)influence atmospheric conditions on regional and global scales.Given this,previous work has shown that soil moisture−driven surface flux variations feed back onto the atmosphere.Whilst soil moisture is a source of atmospheric predictability,no study has evaluated soil moisture−atmosphere coupling on the TP in general circulation models(GCMs).In this study,we use several analysis techniques to assess soil moisture−atmosphere coupling in CMIP6 simulations including:instantaneous coupling indices;analysis of flux and atmospheric behaviour during dry spells;and a quantification of the preference for convection over drier soils.Through these metrics we partition feedbacks into their atmospheric and terrestrial components.Consistent with previous global studies,we conclude substantial inter-model differences in the representation of soil moisture−atmosphere coupling,and that most models underestimate such feedbacks.Focusing on dry spell analysis,most models underestimate increased sensible heat during periods of rainfall deficiency.For example,the model-mean bias in anomalous sensible heat flux is 10 W m−2(≈25%)smaller compared to observations.Deficient dry-spell sensible heat fluxes lead to a weaker atmospheric response.We also find that most GCMs fail to capture the negative feedback between soil moisture and deep convection.The poor simulation of feedbacks in CMIP6 experiments suggests that forecast models also struggle to exploit soil moisture−driven predictability.To improve the representation of land−atmosphere feedbacks requires developments in not only atmospheric modelling,but also surface processes,as we find weak relationships between rainfall biases and coupling indexes.
基金supported by the National Basic Research Program of China (Grant No. 2010CB950400)
文摘The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation. It has been argued in the literature that during the 20th century the Walker circulation weakened, and that this weakening was attributable to anthropogenic climate change. By using updated observations, we show that there has been a rapid interdecadal enhancement of the Walker circulation since the late 1990s. Associated with this enhancement is enhanced precipitation in the tropical western Pacific, anomalous westerlies in the upper troposphere, descent in the central and eastern tropical Pacific, and anomalous surface easterlies in the western and central tropical Pacific. The characteristics of associated oceanic changes are a strengthened thermocline slope and an enhanced zonal SST gradient across the tropical Pacific. Many characteristics of these changes are similar to those associated with the mid-1970s climate shift with an opposite sign. We also show that the interdecadal variability of the Walker circulation in the tropical Pacific is inversely correlated to the interdecadal variability of the zonal circulation in the tropical Atlantic. An enhancement of the Walker circulation in the tropical Pacific is associated with a weakening zonal circulation in the tropical Atlantic and vise versa, implying an inter-Atlantic-Pacific connection of the zonal overturning circulation variation. Whether these recent changes will be sustained is not yet clear, but our research highlights the importance of understanding the interdecadal variability, as well as the long-term trends, that influence tropical circulation.
基金supported by the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund grant agreement P100195 between the Met Office and the National Centre for Atmospheric Science at the University of Reading for the MESETA(Modelling Physical and Dynamical Processes over the Tibetan Plateau and their Regional Effects over East Asia) project
文摘Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the TP to the east. TPVs are known to be one of the main precipitation-bearing systems on the TP and moving-off TPVs have been associated with heavy precipitation and flooding downstream of the TP (e.g., in Sichuan province or over the Yangtze River Valley). Identifying and tracking TPVs is difficult because of their comparatively small horizontal extent (400-800 kin) and the limited availability of soundings over the TP, which in turn constitutes a challenge for short-term predictions of TPV-related impacts and for the climatological study of TPVs. In this study, (i) manual tracking (MT) results using radiosonde data from a network over and downstream of the TP are compared with (ii) results obtained by an automated tracking (AT) algorithm applied to ERA-Interim data. Ten MT-TPV cases are selected based on method (i) and matched to and compared with the corresponding AT-TPVs identified with method (ii). Conversely, ten AT-TPVs are selected and compared with the corresponding MT-TPVs. In general, the comparison shows good results in cases where the underlying data are in good agreement, but considerable differences are also seen in some cases and explained in terms of differences in the tracking methods, data availability/coverage and disagreement between sounding and ERA-Interim data. Recommendations are given for future efforts in TPV detection and tracking, including in an operational weather forecasting context.
基金supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fundsupported by the National Natural Science Foundation of China (Grant No. 41605078)
文摘Predicting monsoon onset is crucial for agriculture and socioeconomic planning in countries where millions rely on the timely arrival of monsoon rains for their livelihoods. In this study we demonstrate useful skill in predicting year-to-year variations in South China Sea summer monsoon onset at up to a three-month lead time using the GloSea5 seasonal forecasting system. The main source of predictability comes from skillful prediction of Pacific sea surface temperatures associated with El Ni?no and La Ni?na. The South China Sea summer monsoon onset is a known indicator of the broadscale seasonal transition that represents the first stage of the onset of the Asian summer monsoon as a whole. Subsequent development of rainfall across East Asia is influenced by subseasonal variability and synoptic events that reduce predictability, but interannual variability in the broadscale monsoon onset for East Asian summer monsoon still provides potentially useful information for users about possible delays or early occurrence of the onset of rainfall over East Asia.
基金supported by the Special Scientific Research Project for Public Interest (Grant No.GYHY201006021)supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate) at the University of Reading
文摘Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and sevenmonth lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960 2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.
基金supported by the National Natural Science Foundation of China (Grant No. 41105046)
文摘This study investigated the relationship be- tween the asymmetry in the duration of El Nifio and La Nina and the length of their decaying phases. The results suggested that the duration asymmetry comes from the long decaying ENSO cases rather than the short decaying ones. The evolutions of short decaying El Nino and La Nina are approximately a mirror image with a rapid decline in the following summer for the warm and cold events. However, a robust asymmetry was found in long decaying cases, with a prolonged and re-intensified La Nina in the following winter. The asymmetry for long decaying cases starts from the westward extension of the zonal wind anomalies in a mature winter, and is further contributed to by the air-sea interaction over the tropical Pacific in the following seasons.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41420104006,41330423)Program of International S&T Cooperation under grant 2016YFE0102400+1 种基金the UK-China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fundfunded by an Independent Research Fellowship from the Natural Environment Research Council(Grant No.NE/L010976/1)
文摘The sensitivity of the representation of the global monsoon annual cycle to horizontal resolution is compared in three AGCMs: the Met Office Unified Model-Global Atmosphere 3.0; the Meteorological Research Institute AGCM3; and the Global High Resolution AGCM from the Geophysical Fluid Dynamics Laboratory. For each model, we use two horizon- tal resolution configurations for the period 1998-2008. Increasing resolution consistently improves simulated precipitation and low-level circulation of the annual mean and the first two annual cycle modes, as measured by the pattern correla- tion coefficient and equitable threat score. Improvements in simulating the summer monsoon onset and withdrawal are region-dependent. No consistent response to resolution is found in simulating summer monsoon retreat. Regionally, in- creased resolution reduces the positive bias in simulated annual mean precipitation, the two annual-cycle modes over the West African monsoon and Northwestern Pacific monsoon. An overestimation of the solstitial mode and an underestimation of the equinoctial asymmetric mode of the East Asian monsoon axe reduced in all high-resolution configurations. Systematic errors exist in lower-resolution models for simulating the onset and withdrawal of the summer monsoon. Higher resolution models consistently improve the early summer monsoon onset over East Asia and West Africa, but substantial differences exist in the responses over the Indian monsoon region, where biases differ across the three low-resolution AGCMs. This study demonstrates the importance of a multi-model comparison when examining the added value of resolution and the importance of model physical parameterizations for simulation of the Indian monsoon.
基金AV,MM,RS,AGT and NPK were supported by the COSMIC project through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund,contract number P106301.NPK was supported by a Natural Environmental Research Council(NERC)Independent Research Fellowship(NE/L010976/1)and by the ACREW programme of the National Centre for Atmospheric Science.We thank Omar V.MÜLLER for help with GloFAS-ERA5.
文摘Large parts of East and South Asia were affected by heavy precipitation and flooding during early summer 2020.This study provides both a statistical and dynamical characterization of rains and floods affecting the Yangtze River Basin(YRB).By aggregating daily and monthly precipitation over river basins across Asia,it is shown that the YRB is one of the areas that was particularly affected.June and July 2020 rainfall was higher than in the previous 20 years,and the YRB experienced anomalously high rainfall across most of its sub-basins.YRB discharge also attained levels not seen since 1998/1999.An automated method detecting the daily position of the East Asian Summer Monsoon Front(EASMF)is applied to show that the anomalously high YRB precipitation was associated with a halted northward progression of the EASMF and prolonged mei-yu conditions over the YRB lasting more than one month.Two 5-day heavy-precipitation episodes(12−16 June and 4−8 July 2020)are selected from this period for dynamical characterization,including Lagrangian trajectory analysis.Particular attention is devoted to the dynamics of the airstreams converging at the EASMF.Both episodes display heavy precipitation and convergence of monsoonal and subtropical air masses.However,clear differences are identified in the upper-level flow pattern,substantially affecting the balance of airmass advection towards the EASMF.This study contextualizes heavy precipitation in Asia in summer 2020 and showcases several analysis tools developed by the authors for the study of such events.
基金the University of Reading, funded by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fundsupported by the National Natural Science Foundation of China (Grant Nos. 42030603 and 42175044)+1 种基金supported by CSSP-China. NPK was supported by an Independent Research Fellowship from the Natural Environment Research Council (Grant No. NE/L010976/1)supported by the National Centre for Atmospheric Science via the NERC/GCRF programme “Atmospheric hazards in developing countries: risk assessment and early warnings ” (ACREW)。
文摘The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characterized by increases in HDE frequency and duration over most of China, with relatively large increases over southeastern China(SEC), northern China(NC), and northeastern China(NEC). The frequency of HDEs averaged over China in the present day(PD,1994–2011) is double that in the early period(EP, 1964–81);the duration of HDEs increases by 60%. Climate experiments with the Met Office Unified Model(MetUM-GOML2) are used to estimate the contributions of anthropogenic forcing to HDE decadal changes over China. Anthropogenic forcing changes can explain 60%–70% of the observed decadal changes,suggesting an important anthropogenic influence on HDE changes over China across the mid-1990s. Single-forcing experiments indicate that the increase in greenhouse gas(GHG) concentrations dominates the simulated decadal changes,increasing the frequency and duration of HDEs throughout China. The change in anthropogenic aerosol(AA) emissions significantly decreases the frequency and duration of HDEs over SEC and NC, but the magnitude of the decrease is much smaller than the increase induced by GHGs. The changes in HDEs in response to anthropogenic forcing are mainly due to the response of climatological mean surface air temperatures. The contributions from changes in variability and changes in climatological mean soil moisture and evapotranspiration are relatively small. The physical processes associated with the response of HDEs to GHG and AA changes are also revealed.
基金supported by the National Natural Science Foundation of China(42030602)。
文摘The East Asian summer monsoon(EASM)profoundly influences the hydroclimate,ecosystems,and water resources of a densely populated region in Asia.Anomalous EASM can lead to floods,droughts,significant economic losses,and social disruption in East Asia and Southeast Asia.Unlike the Indian and African monsoons,the EASM is shaped by both tropical and extratropical climate systems,including tropical oceanic modes,cross-equatorial airflows,the Madden-Julian Oscillation,the thermal condition of the Tibetan Plateau,the South Asia High,and the mid-latitude westerly jet.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grants No.2019QZKK0105)the National Natural Science Foundation of China(Grants Nos.42122036,91837207,42230607)。
文摘The springtime persistent rainfall(SPR)is the major rainy period before the onset of summer monsoon in East Asia,which profoundly affects the regional and even global hydrological cycle.Despite the great importance of the mechanical and thermal effects of the Tibetan Plateau(TP)large-scale orography on the formation of SPR,the impact of small-scale orography over the TP remains poorly understood.Here we show that upward-propagating orographic gravity waves(OGWs),which occur as the subtropical westerlies interact with the TP's small-scale orography,contribute importantly to the SPR.The breaking of OGWs induces a large zonal wave drag in the middle troposphere,which drives a meridional circulation across the TP.The rising branch of the meridional circulation acts to lower the pressure and increase the meridional pressure gradient to the south of the TP by dynamically pumping the lower-tropospheric air upwards.The southwesterly monsoonal flow on the southeastern flank of the TP thus intensifies and transports more water vapor to East Asia,resulting in an enhancement of the SPR.This finding helps more completely understand the impacts of TP's multiscale orography on the SPR and provides a new perspective on the westerly-monsoon synergy in East Asia.
文摘利用英国Hadley中心QUMP模式(Quantifying Uncertainties in Model Projections)集合的5组敏感性试验产生的全球气候背景场驱动区域气候模拟系统PRECIS(Providing Regional Climates for Impacts Studies)产生的降尺度数据,分析PRECIS对中国地面气温变化的模拟能力,同时对SRES A1B温室气体排放情景下21世纪中期(2021-2050年)中国区域的温度做出预估。模拟能力分析结果显示:PRECIS在5组背景场驱动下都可以较好地模拟出气候基准时段(1961-1900年)中国区域气温的年变化和时空分布特征,但存在暖偏差,高敏感度模拟实验的暖偏差幅度要大于中低敏感度。预估结果显示:5组敏感性试验降尺度模拟的温度均呈增加趋势,其中最低温度的变暖幅度高于平均温度和最高温度。高敏感度试验Q10模拟的升温幅度介于低敏感度模拟和中敏感度模拟之间,其他敏感性试验表现出高敏感度模拟的升温幅度高于中敏感度模拟,而中敏感度模拟高于低敏感度模拟。从模拟的升温空间分布上看,西北地区升温幅度最显著,可达2.08-2.61°C,华南地区升温幅度相对较小,为1.33-1.84°C,但不同敏感度模拟的升温幅度具有一定的区域差异。
基金supported by the UK– China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) of China, as part of the Newton Fundsupported by the UK National Centre for Atmospheric Science–Climate (NCAS– Climate) at the University of Reading
文摘This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indicate an abrupt increase in summer mean surface air temperature (SAT) over Northeast Asia since the mid-1990s. Accompanying this abrupt surface wanning, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature (Tmax), daily minimum temperature (Train), annual hottest day temperature (TXx), and annual warmest night temperature (TNx) were observed. There were also increases in the frequency of summer days (SU) and tropical nights (TR). Atmospheric general circulation model experiments forced by changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gas (GHG) concentrations, and anthropogenic aerosol (AA) forcing, relative to the period 1964- 93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes, although the abrupt decrease in precipitation since the mid-1990s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA (through aerosol- radiation and aerosol-cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere-land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply that the abrupt summer surface warming and increases in hot temperature extremes over Northeast Asia since the mid-1990s will probably sustain in the next few decades as GHG concentrations continue to increase and AA precursor emissions over both North America and Europe continue to decrease.
基金financially supported through a University Research Fellowship from the Royal Society (reference UF130571)
文摘Anthropogenic climate change is expected to strengthen the vertical wind shears at aircraft cruising altitudes within the atmospheric jet streams. Such a strengthening would increase the prevalence of the shear instabilities that generate clear-air turbulence. Climate modelling studies have indicated that the amount of moderate-or-greater clear-air turbulence on transatlantic flight routes in winter will increase significantly in future as the climate changes. However,the individual responses of light,moderate,and severe clear-air turbulence have not previously been studied,despite their importance for aircraft operations. Here,we use climate model simulations to analyse the transatlantic wintertime clear-air turbulence response to climate change in five aviation-relevant turbulence strength categories. We find that the probability distributions for an ensemble of 21 clear-air turbulence diagnostics generally gain probability in their right-hand tails when the atmospheric carbon dioxide concentration is doubled. By converting the diagnostics into eddy dissipation rates,we find that the ensembleaverage airspace volume containing light clear-air turbulence increases by 59%(with an intra-ensemble range of 43%–68%),light-to-moderate by 75%(39%–96%),moderate by 94%(37%–118%),moderate-to-severe by 127%(30%–170%),and severe by 149%(36%–188%). These results suggest that the prevalence of transatlantic wintertime clear-air turbulence will increase significantly in all aviation-relevant strength categories as the climate changes.
文摘This paper highlights some theoretical aspects of potential vorticity(PV) and discusses some of the insights the PV perspective has given us. The topics covered include the nature of PV, its controlling role in the symmetric stability of the atmosphere, its inversion to give the flow field, Rossby waves and their coupling to give baroclinic instability, PV and midlatitude weather systems and, finally, insights into tropical motions.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.40475025 and 40221503)Buwen Dong was supported by the ENSEMBLES Project(GOCE-CT-2003-505539)at the UK Natural Environmental Research Council Centres for Atmospheric Science.
文摘In this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an ensemble of integrations by an atmospheric general circulation model (AGCM) forced with the global observed SSTs. We focused on the interannual variability of AO/AAO, which is dominated by internal atmospheric variability. In comparison with previous observed results, the AO/AAO in internal atmospheric variability bear some similar characteristics, but exhibit a much clearer spatial structure: significant correlation between the North Pacific and North Atlantic centers of action, much stronger and more significant associated precipitation anomalies, and the meridional displacement of upper-tropospheric westerly jet streams in the Northern/Southern Hemisphere. In addition, we examined the relationship between the North Atlantic Oscillation (NAO)/AO and East Asian winter monsoon (EAWM). It has been shown that in the internal atmospheric variability, the EAWM variation is significantly related to the NAO through upper-tropospheric atmospheric teleconnection patterns.
基金supported as part of the Energy Exascale Earth System Model(E3SM)project,funded by the U.S.Department of Energy,Office of Science,Office of Biological and Environmental Researchsupported by the CAS Strategic Priority Research Program(Grant No.XDA20060102)+1 种基金China MOST Program(Grant No.2018YFC1507701)the National Natural Science Foundation of China(Grant No.41775091)。
文摘Changes in monsoon precipitation have profound social and economic impacts as more than two-thirds of the world’s population lives in monsoon regions.Observations show a significant reduction in global land monsoon precipitation during the second half of the 20 th century.Understanding the cause of this change,especially possible anthropogenic origins,is important.Here,we compare observed changes in global land monsoon precipitation during 1948–2005 with those simulated by 5 global climate models participating in the Coupled Model Inter-comparison Project-phase 5(CMIP5)under different external forcings.We show that the observed drying trend is consistent with the model simulated response to anthropogenic forcing and to anthropogenic aerosol forcing in particular.We apply the optimal fingerprinting method to quantify anthropogenic influences on precipitation and find that anthropogenic aerosols may have contributed to 102%(62–144%for the 5–95%confidence interval)of the observed decrease in global land monsoon precipitation.A moisture budget analysis indicates that the reduction in precipitation results from reduced vertical moisture advection in response to aerosol forcing.Since much of the monsoon regions,such as India and China,have been experiencing rapid developments with increasing aerosol emissions in the past decedes,our results imply a further reduction in monsoon precipitation in these regions in the future if effective mitigations to reduce aerosol emissions are not deployed.The observed decline of aerosol emission in China since 2006 helps to alleviate the reducing trend of monsoon precipiptaion.