期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Redistribution and magnitude of stresses around horse shoe and circular excavations opened in anisotropic rock 被引量:6
1
作者 Mambou Ngueyep Luc Leroy Ndop Joseph Ndjaka Jean-Marie Bienvenu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期615-621,共7页
In this paper numerical analysis of underground structures, taking account the transverse isotropy system of rocks, was done using CAST 3M code by varying the shape of excavation and the coefficient of earth pressure ... In this paper numerical analysis of underground structures, taking account the transverse isotropy system of rocks, was done using CAST 3M code by varying the shape of excavation and the coefficient of earth pressure k. Numerical results reveal that the anisotropy behavior, the shape of hole and the coefficient of earth pressure k have significant influence to the mining induced stress field and rock deformations which directly control the stability of underground excavation design. The magnitude of horizontal stress obtained for the horse shoe shape excavation(25.2 MPa for k = 1; 52.7 MPa for k = 2)is lower than the magnitude obtained for circular hole(26.4 MPa for k = 1; 59.5 MPa for k = 2).Therefore, we have concluded that the horse shoe shape offers the best stability and the best design for engineer. The anisotropy system presented by rock mass can also influence the redistribution of stresses around hole opened. Numerical results have revealed that the magnitude of redistribution of horizontal stresses obtained for transverse isotropic rock(12.1 MPa for k = 0.5; 25.2 MPa for k = 1 and52.7 MPa for k = 2) is less than those obtained in the case of isotropic rock(27.6 MPa for k = 1;48.6 MPa for k = 2 and 90.81 MPa for k = 2). The more the rock has the anisotropic behavior, the more the mass of rock around the tunnel is stable. 展开更多
关键词 Horse shoe excavation Stress Strain Transverse isotropy Finite element
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部