期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An artificial neural network visible mathematical model for real-time prediction of multiphase flowing bottom-hole pressure in wellbores
1
作者 Chibuzo Cosmas Nwanwe Ugochukwu Ilozurike Duru +1 位作者 Charley Anyadiegwu Azunna I.B.Ekejuba 《Petroleum Research》 EI 2023年第3期370-385,共16页
Accurate prediction of multiphase flowing bottom-hole pressure(FBHP)in wellbores is an important factor required for optimal tubing design and production optimization.Existing empirical correlations and mechanistic mo... Accurate prediction of multiphase flowing bottom-hole pressure(FBHP)in wellbores is an important factor required for optimal tubing design and production optimization.Existing empirical correlations and mechanistic models provide inaccurate FBHP predictions when applied to real-time field datasets because they were developed with laboratory-dependent parameters.Most machine learning(ML)models for FBHP prediction are developed with real-time field data but presented as black-box models.In addition,these ML models cannot be reproduced by other users because the dataset used for training the machine learning algorithm is not open source.These make using the ML models on new datasets difficult.This study presents an artificial neural network(ANN)visible mathematical model for real-time multiphase FBHP prediction in wellbores.A total of 1001 normalized real-time field data points were first used in developing an ANN black-box model.The data points were randomly divided into three different sets;70%for training,15%for validation,and the remaining 15%for testing.Statistical analysis showed that using the Levenberg-Marquardt training optimization algorithm(trainlm),hyperbolic tangent activation function(tansig),and three hidden layers with 20,15 and 15 neurons in the first,second and third hidden layers respectively achieved the best performance.The trained ANN model was then translated into an ANN visible mathematical model by extracting the tuned weights and biases.Trend analysis shows that the new model produced the expected effects of physical attributes on FBHP.Furthermore,statistical and graphical error analysis results show that the new model outperformed existing empirical correlations,mechanistic models,and an ANN white-box model.Training of the ANN on a larger dataset containing new data points covering a wider range of each input parameter can broaden the applicability domain of the proposed ANN visible mathematical model. 展开更多
关键词 Flowing bottom-hole pressure Real-time prediction Artificial neural network Visible mathematical model Levenberg-marquardt optimization algorithm Hyperbolic tangent activation function Empirical correlations Mechanistic models
原文传递
An adaptive neuro-fuzzy inference system white-box model for real-time multiphase flowing bottom-hole pressure prediction in wellbores
2
作者 Chibuzo Cosmas Nwanwe Ugochukwu Ilozurike Duru 《Petroleum》 EI CSCD 2023年第4期629-646,共18页
The majority of published empirical correlations and mechanistic models are unable to provide accurate flowing bottom-hole pressure(FBHP)predictions when real-time field well data are used.This is because the empirica... The majority of published empirical correlations and mechanistic models are unable to provide accurate flowing bottom-hole pressure(FBHP)predictions when real-time field well data are used.This is because the empirical correlations and the empirical closure correlations for the mechanistic models were developed with experimental datasets.In addition,most machine learning(ML)FBHP prediction models were constructed with real-time well data points and published without any visible mathematical equation.This makes it difficult for other readers to use these ML models since the datasets used in their development are not open-source.This study presents a white-box adaptive neuro-fuzzy inference system(ANFIS)model for real-time prediction of multiphase FBHP in wellbores.1001 real well data points and 1001 normalized well data points were used in constructing twenty-eight different Takagi eSugeno fuzzy inference systems(FIS)structures.The dataset was divided into two sets;80%for training and 20%for testing.Statistical performance analysis showed that a FIS with a 0.3 range of influence and trained with a normalized dataset achieved the best FBHP prediction performance.The optimal ANFIS black-box model was then translated into the ANFIS white-box model with the Gaussian input and the linear output membership functions and the extracted tuned premise and consequence parameter sets.Trend analysis revealed that the novel ANFIS model correctly simulates the anticipated effect of input parameters on FBHP.In addition,graphical and statistical error analyses revealed that the novel ANFIS model performed better than published mechanistic models,empirical correlations,and machine learning models.New training datasets covering wider input parameter ranges should be added to the original training dataset to improve the model's range of applicability and accuracy. 展开更多
关键词 Machine learning models Empirical correlations Mechanistic models Multiphase flowing bottom-hole pressure Adaptive neuro-fuzzy inference system White-box model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部