Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ...Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.展开更多
In a hard-rock mine,blasting is an important rock-breakage process that impacts energy consumption both in downstream comminution processes and mine productivity.Optimizing the blast fragmentation to improve rock-brea...In a hard-rock mine,blasting is an important rock-breakage process that impacts energy consumption both in downstream comminution processes and mine productivity.Optimizing the blast fragmentation to improve rock-breakage efficiencies during crushing and grinding is key to mine-to-mill(MTM)optimization.This study explores the use of monitoring while drilling(MWD)data to achieve this goal.Representative penetration rates(PRs)were extracted from blastholes to estimate intact rock properties and predict the breakage efficiencies that directly affect comminution energy consumption.Two intact rock properties,tensile strength(TS)and Bond work index(BWI),were correlated with the PR data to predict these efficiencies in crushing and grinding,respectively.Because of the complexity of the raw MWD data and effects of various disturbances,the MWD data was preprocessed and normalized to achieve a representative PR value at each blasthole.This preprocessing entailed defining valid PR ranges from the MWD data that could eliminate the noise related to discontinuity features in the rock mass structure as well as errors in operator behaviors.The PR data was also normalized using the adjusted penetration rate(APR)to minimize the effects of mechanical factors such as drill feed force,torque,and rotational speed.To correlate the representative APR value with intact rock properties,TS and BWI,various laboratory experiments were conducted:drilling tests using a high-precision coring machine,Brazilian disc tests,and Bond grindability tests.Based on the results of these experiments,models were developed to predict rock-breakage efficiencies during crushing and grinding based on APR.The result of this study can be used to obtain blast energy designs that consider comminution energy consumption and efficiency in the downstream rock-breakage processes.展开更多
Excessive exposure to heat can lead to injuries,illness,and death among mineworkers.The actual cost of heat-related injuries and illnesses is unknown because of underreporting and lack of symptom recognition.Multi-fac...Excessive exposure to heat can lead to injuries,illness,and death among mineworkers.The actual cost of heat-related injuries and illnesses is unknown because of underreporting and lack of symptom recognition.Multi-factorial,evidence-based,and field-ready guidelines for identifying–and predicting–physiolo gical markers of heat strain are currently unavailable.The predicted heat strain(PHS)model,is the latest attempt by mining companies to aid in the evaluation and management of occupational heat exposures.The adopted algorithm relies on worksite environmental measurements and an estimate of individual metabolic rate for mine workers to provide an estimate of the workers’core temperature during a work shift.There are several known limitations of the PHS model,including the assumption that the subject worker is hydrated and fit.A modified PHS model was presented based on eight physical parameters that are measured at different intervals during a work shift;these parameters are air temperature,relative humidity,air velocity,radiation,metabolic rate,acclimatization,clothing insulation and posture.To validate the results,the predictions from the modified PHS model were compared with direct physiological measurements obtained from ingestible pills and heat stress monitors under different environmental and working conditions.展开更多
An environmentally friendly organic biosorbent was fabricated using hay by succinylation. Metallic cation adsorption tests were performed using synthetic nickel(Ⅱ) and cadmium(Ⅱ) solutions to simulate heavy-metal re...An environmentally friendly organic biosorbent was fabricated using hay by succinylation. Metallic cation adsorption tests were performed using synthetic nickel(Ⅱ) and cadmium(Ⅱ) solutions to simulate heavy-metal recovery from aqueous solution. The adsorption efficiency was greater than 98% for both cadmium and nickel ions when the biosorbent concentration was 5.0 g/L and the initial metal concentrations were 50 mg/L. The surface of the biosorbent was characterized using Fourier transform infrared spectroscopy to investigate the changes in the surface functional groups. The functional groups changed according to the surface treatment, resulting in an effective biosorbent. The kinetics of the metals adsorption revealed that the reactions are pseudo-second order, and the adsorption isotherm well followed the Langmuir model. The maximum adsorption capacities predicted by the Langmuir model were 75.19 mg/g and 57.77 mg/g for cadmium and nickel, respectively. The fabricated biosorbent was regenerated using Na Cl multiple times, with 2.1% for Cd and 4.0% for Ni in adsorption capacity after three regeneration cycles. The proposed biosorbent can be a good alternative to resin or other chemical adsorbents for heavy-metal recovery in metallurgical processing or municipal water treatment.展开更多
Based on optimized forecast method of unascertained classifying,a unascer- tained measurement classifying model (UMC) to predict mining induced goaf collapse was established,The discriminated factors of the model are ...Based on optimized forecast method of unascertained classifying,a unascer- tained measurement classifying model (UMC) to predict mining induced goaf collapse was established,The discriminated factors of the model are influential factors including over- burden layer type,overburden layer thickness,the complex degree of geologic structure, the inclination angle of coal bed,volume rate of the cavity region,the vertical goaf depth from the surface and space superposition layer of the goaf region.Unascertained mea- surement (UM) function of each factor was calculated.The unascertained measurement to indicate the classification center and the grade of waiting forecast sample was determined by the UM distance between the synthesis index of waiting forecast samples and index of every classification.The training samples were tested by the established model,and the correct rate is 100%.Furthermore,the seven waiting forecast samples were predicted by the UMC model.The results show that the forecast results are fully consistent with the ac- tual situation.展开更多
This study was conducted on the Ngaoundaba Crater Lake sediments to infer provenance,weathering conditions,organic matter accumulation,and trace metal concentrations.Ngaoundaba Lake sediments were collected using a ma...This study was conducted on the Ngaoundaba Crater Lake sediments to infer provenance,weathering conditions,organic matter accumulation,and trace metal concentrations.Ngaoundaba Lake sediments were collected using a manual core sampler at 5 to 8 m water depth.Two sediment cores from the littoral and center of the lake were analyzed for grain size distribution,water content(WC),organic matter content,mineralogy,and major and trace element concentrations.The Ngaoundaba sediments were classified as silt and sandy silt.Sediments show high content in organic matter,which is more to the littoral than to the center of the lake,varying from 14.6%to 24%and21.2%to 40.8%,respectively.The grain surface features identified by Scanning Electron Microscopy(SEM)show both chemical and mechanical microtextures with subrounded to angular shape suggesting both proximal and distal sources.The lake sediments are composed of quartz,kaolinite,and hematite,with low amounts of feldspars,rutile,calcite,illite,and ilmenite.Weathering indices such as the chemical index of alteration(CIA),chemical index of weathering(CIW),and index of compositional variability(ICV)indicate moderate to intense chemical weathering in the source area and immature to mature sediments.The geochemical composition indicates that the sediments were derived from felsic to intermediate igneous rocks,such as granitoids,and mafic alkali lavas like basanites.The environmental risk assessment of trace metals obtained by enrichment factor(EF)and geo-accumulation index(I-geo)shows low contamination of the lake sediments.展开更多
The Lake Tana area is located within a complex volcano-tectonic basin on the northwestern Ethiopian plateau.The basin is underlain by a thick succession of Oligocene transitional basalts and sub-alkaline rhyolites ove...The Lake Tana area is located within a complex volcano-tectonic basin on the northwestern Ethiopian plateau.The basin is underlain by a thick succession of Oligocene transitional basalts and sub-alkaline rhyolites overlain in places,particularly south of the lake,by Quaternary alkaline to mildly transitional basalts,and dotted with Oligo-Miocene trachyte domes and plugs.This paper presents the results of integrated field,petrographic,and major and trace element geochemical studies of the Lake Tana area volcanic rocks,with particular emphasis on the Oligocene basalts and rhyolites.The studies reveal a clear petrogenetic link between the Oligocene basalts and rhyolites.The Oligocene basalts are:(1)plagioclase,olivine,and/or pyroxene phyric;(2)show an overall decreasing trend in MgO,Fe_(2)O_(3),and CaO with silica;(3)have relatively low Mg#,Ni and Cr contents and high Nb/La and Nb/Yb ratios;and(4)show LREE enriched and generally flat HREE patterns.All these imply the origin of the Oligocene basalts by shallow-level fractional crystallization of an enriched magma sourced at the asthenospheric mantle.The Oligocene rhyolites:(1)are enriched in incompatible while depleted in compatible trace elements,P and Ti;(2)show a strong negative Eu anomaly;(3)contain appreciable amounts of plagioclase,apatite,and Fe-Ti oxides;and(4)show clear geochemical similarity with well-constrained rhyolites from the Large Igneous Province(LIP)of the northwestern Ethiopian plateau.Low-pressure fractional crystallization of mantle-derived basaltic magma in crustal magma chambers explains the origin of these rhyolites.Our study further shows that the Oligocene basalts and rhyolites are co-genetic and the felsic rocks of the Lake Tana area are related differentiates of the flood basalt volcanism in the northwestern Ethiopian plateau.展开更多
The present work is an attempt to assess the effect of crustal contamination through the Granitoids host rock, within the southern Bastar mafic dykes of Chhattisgarh, India, in the light of geochemical characteristics...The present work is an attempt to assess the effect of crustal contamination through the Granitoids host rock, within the southern Bastar mafic dykes of Chhattisgarh, India, in the light of geochemical characteristics. Petrographically, these dykes are classified as Amphibolite, Dolerite/Meta-Dolerite and Diorite. Geochemically, all dyke samples have been classified as “high iron sub-alkaline Tholeiites”. On account of overlapping magnesium and iron concentration in Amphibolite and Dolerite dykes, distinctly higher High-Field Strength Element (HFSE), higher Rare-Earth Element (REE) concentrations in the Dolerite dykes than in the Amphibolite dykes, it is inferred that both dyke swarms are fed from two different Tholeiitic magmas. Conclusively, these dykes are recognized as belonging to two different swarms, BD1 and BD2 respectively. This is also corroborated by differences in the LREE patterns i.e. BD2 dykes have relatively enriched LREE pattern than that of BD1 dykes. It is evident from higher LaN/LuN ratio in the BD2 swarm, than in BD1 dyke swarm. These dykes intrude in the coarse-grained leucocratic Bastar Granitoids/Granite Gneisses, which are the host for these dykes. The comparative study of the Primordial mantle-normalized multi-element spider grams, and Chondrite-normalized rare-earth element patterns for the average of BD1 and BD2 dykes and the average of Bastar Granitoids, clearly reflect that the great degree of variation in LIL elements, observed in the Bastar dykes, is either due to metamorphism or due to secondary alteration, and not due to crustal contamination. This is further supported by much higher average “Nb”/“La” ratios in Bastar Mafic Dykes, than in the Bastar Granitoids. Crustal assimilation plays almost no role in the petrogenesis of the Bastar mafic dykes. The Bastar mafic dykes owe their incompatible element characteristics, certainly mantle derived.展开更多
The present paper provides evidence of the possible impact of shale-limestone-mudstone successions aquifers on groundwater chemistry by assessing the different hydrogeochemical processes. This was done by considering ...The present paper provides evidence of the possible impact of shale-limestone-mudstone successions aquifers on groundwater chemistry by assessing the different hydrogeochemical processes. This was done by considering a sedimentary aquifer basin, namely the Hantebet sub basin (24.4 km<sup>2</sup>), Tekeze basin, northern Ethiopia. Groundwater is the main source of water supply in the sub basin extracted using hand dug wells, for domestic, irrigation and livestock uses. The sub basin is dominated by Paleozoic-Mesozoic sedimentary successions. Twenty groundwater samples were collected from hand dug wells using depth-integrated sampling techniques from both confined and unconfined aquifers. The major water bearing formations are gravely sand, weathered shale and weathered and fractured limestone, and intercalated weathered and fractured limestone and mudstone. The results indicate that groundwater is acidic to neutral, fresh, and hard to very hard. Ca<sup>2+</sup>, Na<sup>+</sup>, HCO<sup>-</sup>3</sub> and SO<sup>2-</sup>4</sub> are dominant ions compared to Mg<sup>2+</sup>, K<sup>+</sup>, and Cl<sup>-</sup> ions which show low to very low concentrations. Among eight hydrochemical facies identified, Ca-Na-HCO<sub>3</sub> (40%), Ca-HCO<sub>3</sub> (20%), Ca-Mg-Na-HCO<sub>3</sub> (10%) and Ca-Na-HCO<sub>3</sub>-SO<sub>4</sub> (10%) types dominate water chemistry. Dissolution of calcite and gypsum, and hydrolysis of feldspars, plagioclase, biotite and pyroxene are the major geochemical processes that control the chemistry of groundwater in the area. The intercalated shale beds are the source of sodium and chloride ions. Since, this study is based on groundwater from hand dug wells, the conclusions of this study should be further verified using groundwater from deep wells that are drilled in these successions.展开更多
An optimum design of box cuts in soil formations is very crucial in order to obviate the major risk factors originating from the collapse of sidewalls and flooding of excavations during storm rainfall. The present pap...An optimum design of box cuts in soil formations is very crucial in order to obviate the major risk factors originating from the collapse of sidewalls and flooding of excavations during storm rainfall. The present paper aims to present a holistic classification of the Kalahari Formation stratigraphy in Zone 5 and define engineering properties of each lithological unit, in order to establish a safe working design. For the present objectives, collection of data was carried out through logging core from selected geotechnical boreholes drilled within vicinity of the proposed Northern mine box cut. Hydrogeological assessments and feasibility studies within the purview of study region were also considered. Geotechnical logging parameters gathered on site were derived from the Rock Mass Rating system (RMR) for design requirements [<a href="#ref1">1</a>]. Input parameters and material characteristics taken from laboratory test results provided by KCM were incorporated in the analysis. The box cut slopes were modelled in “Rocscience software” for evaluation of safety factor using “limit equilibrium method”. Slope optimization required the slope surface to be as steep as possible while maintaining an adequate factor of safety ranging from 1.5 - 1.8. For the box cut design with optimum safety, the recommended parameters are: stable slope angle—35<span style="white-space:nowrap;">°</span> - 40<span style="white-space:nowrap;">°</span>;ramp angle—8<span style="white-space:nowrap;">°</span>, depth of pit—60 meters;bench width—4.9 meters and the bench length—13.25 meters.展开更多
Rock abrasion plays a significant role in geotechnical design, tunneling operations and the safety of foundations from scour. It is imperative to determine such properties of uniaxial compression strength (UCS), rock ...Rock abrasion plays a significant role in geotechnical design, tunneling operations and the safety of foundations from scour. It is imperative to determine such properties of uniaxial compression strength (UCS), rock quality designation (RQD) and hardness for rock engineering to help determine the amount of scour at foundation locations in order to prevent structural collapse, wear on drilling tools and help predict unstable rock conditions. Current practice for estimating maximum rock abrasion is based on the Los Angeles abrasion test;however, more research is needed to provide a more accurate and compatible method for all subsurface materials used in mining and civil engineering projects. This report will provide simple correlations relating abrasion resistance to RQD, UCS, Geological Strength Index (GSI) and Rock Mass Rating (RMR) and shear strength of metamorphic rock (Quartzite). Methods, results, recommendations and conclusions are presented. The paper also introduces recommendations for future rock abrasion techniques and discusses the use of these correlations exhibiting strong relationships between the mentioned rock properties.展开更多
Mineral dissolution and mechanical deformation of granite are two main mechanisms that affect permeability evolution of rock fracture.In this study,two water flow-through experiments with large granite fractures were ...Mineral dissolution and mechanical deformation of granite are two main mechanisms that affect permeability evolution of rock fracture.In this study,two water flow-through experiments with large granite fractures were conducted at 200 0C with a constant flow rate for 24 h,under confining pressures of 5 and 10 MPa,respectively.Water pressure and temperature were measured,fracture aperture and permeability were calculated,and chemical element concentrations in effluent water were tested for mechanism analysis.The permeability fluctuates up and down between 2.62 × 10^(-12)and 3.16 ×10^(-12)m^(2)at confining pressure of 5 MPa;while it decreased monotonously by 24% from 1.92 × 10^(-12)to1.45 × 10^(-12)m^(2)at a confining pressure of 10 MPa.The heat transfer rates at both experiments stay stable at about 0.25 J/s.The mass concentration of Ca,Na,K,and Si in effluent water are between 5 to 23mg/L,indicating slight dissolution of Ca-plagioclase,Na-plagioclase,and K-feldspar,as well as possible precipitation of minor amount of kaolinite or quartz.The total amount of free-face dissolution and pressure dissolution are similar at 5 and 10 MPa.The geochemical reaction counts for only small part of the aperture change,while the mechanical deformation counts the major part of the aperture change.展开更多
基金We acknowledge the funding support from the National Natural Science Foundation of China Youth Fund(Grant No.52004019)the National Natural Science Foundation of China(Grant No.41825018)China Postdoctoral Science Foundation(Grant No.2023M733481).
文摘Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.
文摘In a hard-rock mine,blasting is an important rock-breakage process that impacts energy consumption both in downstream comminution processes and mine productivity.Optimizing the blast fragmentation to improve rock-breakage efficiencies during crushing and grinding is key to mine-to-mill(MTM)optimization.This study explores the use of monitoring while drilling(MWD)data to achieve this goal.Representative penetration rates(PRs)were extracted from blastholes to estimate intact rock properties and predict the breakage efficiencies that directly affect comminution energy consumption.Two intact rock properties,tensile strength(TS)and Bond work index(BWI),were correlated with the PR data to predict these efficiencies in crushing and grinding,respectively.Because of the complexity of the raw MWD data and effects of various disturbances,the MWD data was preprocessed and normalized to achieve a representative PR value at each blasthole.This preprocessing entailed defining valid PR ranges from the MWD data that could eliminate the noise related to discontinuity features in the rock mass structure as well as errors in operator behaviors.The PR data was also normalized using the adjusted penetration rate(APR)to minimize the effects of mechanical factors such as drill feed force,torque,and rotational speed.To correlate the representative APR value with intact rock properties,TS and BWI,various laboratory experiments were conducted:drilling tests using a high-precision coring machine,Brazilian disc tests,and Bond grindability tests.Based on the results of these experiments,models were developed to predict rock-breakage efficiencies during crushing and grinding based on APR.The result of this study can be used to obtain blast energy designs that consider comminution energy consumption and efficiency in the downstream rock-breakage processes.
文摘Excessive exposure to heat can lead to injuries,illness,and death among mineworkers.The actual cost of heat-related injuries and illnesses is unknown because of underreporting and lack of symptom recognition.Multi-factorial,evidence-based,and field-ready guidelines for identifying–and predicting–physiolo gical markers of heat strain are currently unavailable.The predicted heat strain(PHS)model,is the latest attempt by mining companies to aid in the evaluation and management of occupational heat exposures.The adopted algorithm relies on worksite environmental measurements and an estimate of individual metabolic rate for mine workers to provide an estimate of the workers’core temperature during a work shift.There are several known limitations of the PHS model,including the assumption that the subject worker is hydrated and fit.A modified PHS model was presented based on eight physical parameters that are measured at different intervals during a work shift;these parameters are air temperature,relative humidity,air velocity,radiation,metabolic rate,acclimatization,clothing insulation and posture.To validate the results,the predictions from the modified PHS model were compared with direct physiological measurements obtained from ingestible pills and heat stress monitors under different environmental and working conditions.
文摘An environmentally friendly organic biosorbent was fabricated using hay by succinylation. Metallic cation adsorption tests were performed using synthetic nickel(Ⅱ) and cadmium(Ⅱ) solutions to simulate heavy-metal recovery from aqueous solution. The adsorption efficiency was greater than 98% for both cadmium and nickel ions when the biosorbent concentration was 5.0 g/L and the initial metal concentrations were 50 mg/L. The surface of the biosorbent was characterized using Fourier transform infrared spectroscopy to investigate the changes in the surface functional groups. The functional groups changed according to the surface treatment, resulting in an effective biosorbent. The kinetics of the metals adsorption revealed that the reactions are pseudo-second order, and the adsorption isotherm well followed the Langmuir model. The maximum adsorption capacities predicted by the Langmuir model were 75.19 mg/g and 57.77 mg/g for cadmium and nickel, respectively. The fabricated biosorbent was regenerated using Na Cl multiple times, with 2.1% for Cd and 4.0% for Ni in adsorption capacity after three regeneration cycles. The proposed biosorbent can be a good alternative to resin or other chemical adsorbents for heavy-metal recovery in metallurgical processing or municipal water treatment.
基金the National Natural Science Foundation of China(50490274)Mittal Innovative and Enterprising Project at Center South University(07MX14)
文摘Based on optimized forecast method of unascertained classifying,a unascer- tained measurement classifying model (UMC) to predict mining induced goaf collapse was established,The discriminated factors of the model are influential factors including over- burden layer type,overburden layer thickness,the complex degree of geologic structure, the inclination angle of coal bed,volume rate of the cavity region,the vertical goaf depth from the surface and space superposition layer of the goaf region.Unascertained mea- surement (UM) function of each factor was calculated.The unascertained measurement to indicate the classification center and the grade of waiting forecast sample was determined by the UM distance between the synthesis index of waiting forecast samples and index of every classification.The training samples were tested by the established model,and the correct rate is 100%.Furthermore,the seven waiting forecast samples were predicted by the UMC model.The results show that the forecast results are fully consistent with the ac- tual situation.
基金generously sponsored by the German Federal Ministry of Education and Researchsupported by the Alexander von Humboldt Foundation。
文摘This study was conducted on the Ngaoundaba Crater Lake sediments to infer provenance,weathering conditions,organic matter accumulation,and trace metal concentrations.Ngaoundaba Lake sediments were collected using a manual core sampler at 5 to 8 m water depth.Two sediment cores from the littoral and center of the lake were analyzed for grain size distribution,water content(WC),organic matter content,mineralogy,and major and trace element concentrations.The Ngaoundaba sediments were classified as silt and sandy silt.Sediments show high content in organic matter,which is more to the littoral than to the center of the lake,varying from 14.6%to 24%and21.2%to 40.8%,respectively.The grain surface features identified by Scanning Electron Microscopy(SEM)show both chemical and mechanical microtextures with subrounded to angular shape suggesting both proximal and distal sources.The lake sediments are composed of quartz,kaolinite,and hematite,with low amounts of feldspars,rutile,calcite,illite,and ilmenite.Weathering indices such as the chemical index of alteration(CIA),chemical index of weathering(CIW),and index of compositional variability(ICV)indicate moderate to intense chemical weathering in the source area and immature to mature sediments.The geochemical composition indicates that the sediments were derived from felsic to intermediate igneous rocks,such as granitoids,and mafic alkali lavas like basanites.The environmental risk assessment of trace metals obtained by enrichment factor(EF)and geo-accumulation index(I-geo)shows low contamination of the lake sediments.
文摘The Lake Tana area is located within a complex volcano-tectonic basin on the northwestern Ethiopian plateau.The basin is underlain by a thick succession of Oligocene transitional basalts and sub-alkaline rhyolites overlain in places,particularly south of the lake,by Quaternary alkaline to mildly transitional basalts,and dotted with Oligo-Miocene trachyte domes and plugs.This paper presents the results of integrated field,petrographic,and major and trace element geochemical studies of the Lake Tana area volcanic rocks,with particular emphasis on the Oligocene basalts and rhyolites.The studies reveal a clear petrogenetic link between the Oligocene basalts and rhyolites.The Oligocene basalts are:(1)plagioclase,olivine,and/or pyroxene phyric;(2)show an overall decreasing trend in MgO,Fe_(2)O_(3),and CaO with silica;(3)have relatively low Mg#,Ni and Cr contents and high Nb/La and Nb/Yb ratios;and(4)show LREE enriched and generally flat HREE patterns.All these imply the origin of the Oligocene basalts by shallow-level fractional crystallization of an enriched magma sourced at the asthenospheric mantle.The Oligocene rhyolites:(1)are enriched in incompatible while depleted in compatible trace elements,P and Ti;(2)show a strong negative Eu anomaly;(3)contain appreciable amounts of plagioclase,apatite,and Fe-Ti oxides;and(4)show clear geochemical similarity with well-constrained rhyolites from the Large Igneous Province(LIP)of the northwestern Ethiopian plateau.Low-pressure fractional crystallization of mantle-derived basaltic magma in crustal magma chambers explains the origin of these rhyolites.Our study further shows that the Oligocene basalts and rhyolites are co-genetic and the felsic rocks of the Lake Tana area are related differentiates of the flood basalt volcanism in the northwestern Ethiopian plateau.
文摘The present work is an attempt to assess the effect of crustal contamination through the Granitoids host rock, within the southern Bastar mafic dykes of Chhattisgarh, India, in the light of geochemical characteristics. Petrographically, these dykes are classified as Amphibolite, Dolerite/Meta-Dolerite and Diorite. Geochemically, all dyke samples have been classified as “high iron sub-alkaline Tholeiites”. On account of overlapping magnesium and iron concentration in Amphibolite and Dolerite dykes, distinctly higher High-Field Strength Element (HFSE), higher Rare-Earth Element (REE) concentrations in the Dolerite dykes than in the Amphibolite dykes, it is inferred that both dyke swarms are fed from two different Tholeiitic magmas. Conclusively, these dykes are recognized as belonging to two different swarms, BD1 and BD2 respectively. This is also corroborated by differences in the LREE patterns i.e. BD2 dykes have relatively enriched LREE pattern than that of BD1 dykes. It is evident from higher LaN/LuN ratio in the BD2 swarm, than in BD1 dyke swarm. These dykes intrude in the coarse-grained leucocratic Bastar Granitoids/Granite Gneisses, which are the host for these dykes. The comparative study of the Primordial mantle-normalized multi-element spider grams, and Chondrite-normalized rare-earth element patterns for the average of BD1 and BD2 dykes and the average of Bastar Granitoids, clearly reflect that the great degree of variation in LIL elements, observed in the Bastar dykes, is either due to metamorphism or due to secondary alteration, and not due to crustal contamination. This is further supported by much higher average “Nb”/“La” ratios in Bastar Mafic Dykes, than in the Bastar Granitoids. Crustal assimilation plays almost no role in the petrogenesis of the Bastar mafic dykes. The Bastar mafic dykes owe their incompatible element characteristics, certainly mantle derived.
文摘The present paper provides evidence of the possible impact of shale-limestone-mudstone successions aquifers on groundwater chemistry by assessing the different hydrogeochemical processes. This was done by considering a sedimentary aquifer basin, namely the Hantebet sub basin (24.4 km<sup>2</sup>), Tekeze basin, northern Ethiopia. Groundwater is the main source of water supply in the sub basin extracted using hand dug wells, for domestic, irrigation and livestock uses. The sub basin is dominated by Paleozoic-Mesozoic sedimentary successions. Twenty groundwater samples were collected from hand dug wells using depth-integrated sampling techniques from both confined and unconfined aquifers. The major water bearing formations are gravely sand, weathered shale and weathered and fractured limestone, and intercalated weathered and fractured limestone and mudstone. The results indicate that groundwater is acidic to neutral, fresh, and hard to very hard. Ca<sup>2+</sup>, Na<sup>+</sup>, HCO<sup>-</sup>3</sub> and SO<sup>2-</sup>4</sub> are dominant ions compared to Mg<sup>2+</sup>, K<sup>+</sup>, and Cl<sup>-</sup> ions which show low to very low concentrations. Among eight hydrochemical facies identified, Ca-Na-HCO<sub>3</sub> (40%), Ca-HCO<sub>3</sub> (20%), Ca-Mg-Na-HCO<sub>3</sub> (10%) and Ca-Na-HCO<sub>3</sub>-SO<sub>4</sub> (10%) types dominate water chemistry. Dissolution of calcite and gypsum, and hydrolysis of feldspars, plagioclase, biotite and pyroxene are the major geochemical processes that control the chemistry of groundwater in the area. The intercalated shale beds are the source of sodium and chloride ions. Since, this study is based on groundwater from hand dug wells, the conclusions of this study should be further verified using groundwater from deep wells that are drilled in these successions.
文摘An optimum design of box cuts in soil formations is very crucial in order to obviate the major risk factors originating from the collapse of sidewalls and flooding of excavations during storm rainfall. The present paper aims to present a holistic classification of the Kalahari Formation stratigraphy in Zone 5 and define engineering properties of each lithological unit, in order to establish a safe working design. For the present objectives, collection of data was carried out through logging core from selected geotechnical boreholes drilled within vicinity of the proposed Northern mine box cut. Hydrogeological assessments and feasibility studies within the purview of study region were also considered. Geotechnical logging parameters gathered on site were derived from the Rock Mass Rating system (RMR) for design requirements [<a href="#ref1">1</a>]. Input parameters and material characteristics taken from laboratory test results provided by KCM were incorporated in the analysis. The box cut slopes were modelled in “Rocscience software” for evaluation of safety factor using “limit equilibrium method”. Slope optimization required the slope surface to be as steep as possible while maintaining an adequate factor of safety ranging from 1.5 - 1.8. For the box cut design with optimum safety, the recommended parameters are: stable slope angle—35<span style="white-space:nowrap;">°</span> - 40<span style="white-space:nowrap;">°</span>;ramp angle—8<span style="white-space:nowrap;">°</span>, depth of pit—60 meters;bench width—4.9 meters and the bench length—13.25 meters.
文摘Rock abrasion plays a significant role in geotechnical design, tunneling operations and the safety of foundations from scour. It is imperative to determine such properties of uniaxial compression strength (UCS), rock quality designation (RQD) and hardness for rock engineering to help determine the amount of scour at foundation locations in order to prevent structural collapse, wear on drilling tools and help predict unstable rock conditions. Current practice for estimating maximum rock abrasion is based on the Los Angeles abrasion test;however, more research is needed to provide a more accurate and compatible method for all subsurface materials used in mining and civil engineering projects. This report will provide simple correlations relating abrasion resistance to RQD, UCS, Geological Strength Index (GSI) and Rock Mass Rating (RMR) and shear strength of metamorphic rock (Quartzite). Methods, results, recommendations and conclusions are presented. The paper also introduces recommendations for future rock abrasion techniques and discusses the use of these correlations exhibiting strong relationships between the mentioned rock properties.
基金funded by the National Natural Science Foundation of China (Nos. 42072304 and 41702387)The Science and Technology Innovation Program of Hunan Province (2021RC3009)the Natural Science Foundation of Hunan Province (No. 2021JJ40726)。
文摘Mineral dissolution and mechanical deformation of granite are two main mechanisms that affect permeability evolution of rock fracture.In this study,two water flow-through experiments with large granite fractures were conducted at 200 0C with a constant flow rate for 24 h,under confining pressures of 5 and 10 MPa,respectively.Water pressure and temperature were measured,fracture aperture and permeability were calculated,and chemical element concentrations in effluent water were tested for mechanism analysis.The permeability fluctuates up and down between 2.62 × 10^(-12)and 3.16 ×10^(-12)m^(2)at confining pressure of 5 MPa;while it decreased monotonously by 24% from 1.92 × 10^(-12)to1.45 × 10^(-12)m^(2)at a confining pressure of 10 MPa.The heat transfer rates at both experiments stay stable at about 0.25 J/s.The mass concentration of Ca,Na,K,and Si in effluent water are between 5 to 23mg/L,indicating slight dissolution of Ca-plagioclase,Na-plagioclase,and K-feldspar,as well as possible precipitation of minor amount of kaolinite or quartz.The total amount of free-face dissolution and pressure dissolution are similar at 5 and 10 MPa.The geochemical reaction counts for only small part of the aperture change,while the mechanical deformation counts the major part of the aperture change.