The relationships between microhardness and microstructure, macrostructure and mechanical properties of friction stir welded joints AA6061-T913 were studied. Three equations were suggested to predict the grain size, u...The relationships between microhardness and microstructure, macrostructure and mechanical properties of friction stir welded joints AA6061-T913 were studied. Three equations were suggested to predict the grain size, ultimate tensile strength and yield strength from the hardness throughout the weld. Two-dimensional contour of grain size and three-dimensional maps of ultimate tensile and yield strengths were plotted according to the proposed equations. Also, the location of macroscopic zones was estimated based on hardness distribution. The modeling results were compared with the results obtained from microscopy and tensile tests. The modeling results show good agreement with the experimental findings, and the average differences between them for the ultimate tensile strength and yield strength were about 8% and 3%, respectively.展开更多
Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concret...Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine.展开更多
The alkaline leaching of arsenic (As2O3) by Na2S, together with its precipitation by Fe2(SO4)3 was studied. Response surface methodology based on central composite design was employed to quantify and qualify the effec...The alkaline leaching of arsenic (As2O3) by Na2S, together with its precipitation by Fe2(SO4)3 was studied. Response surface methodology based on central composite design was employed to quantify and qualify the effect of pertinent factors and to develop statistical models for optimization purposes. Based on the obtained results, 89% of arsenic is removed from the dust under following optimum predicted conditions: Na2S concentration of 100 g/L and solid to liquid ratio of 0.163 g/mL at 80 °C. It is found that solid to liquid ratio and Na2S concentration are the significant factors influencing the leaching process. In the precipitation process, more than 99.93% of arsenic from the leaching solution is removed in the form of amorphous ferric arsenate, at pH 4.8 when Fe3+ to arsenic and H2O2 to arsenic molar ratios are set at 5:1 and 4:1, respectively. Also, Fe3+ to arsenic ratio and pH are the most significant factors, and the interaction between these terms is significant.展开更多
WC-Co hard metal was furnace brazed by Ag-Cu-Zn+Ni/Mn filler alloy using a tube furnace under high-purity argon at730°C.The influence of brazing time and gap size of joints was studied.The results revealed the ma...WC-Co hard metal was furnace brazed by Ag-Cu-Zn+Ni/Mn filler alloy using a tube furnace under high-purity argon at730°C.The influence of brazing time and gap size of joints was studied.The results revealed the maximum shear strength of(156±7)MPa for samples with150μm gap size at a holding time15min.The characterization and microstructure of the brazed joints were characterized by SEM,EDS and XRD.The results showed that increasing the time from5to15min could provide a better chance for the liquid interlayer to flow towards the base metal.However,the formation of some metallic phases such as Mn3W3C at brazing time longer than15min resulted in decreased shear strength of the joint.展开更多
Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks u...Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks under cyclic loading fail at much lower strength as compared to those subjected to the monotonic loading conditions. A few selected cored granodiorite and sandstone specimens have been subjected to uniaxial cyclic compression tests to obtain the unconfined fatigue strength and life. This study seeks to examine the effects of cyclic loading conditions, loading amplitude and applied stress level on the fatigue life of sandstone, as a soft rock, and granodiorite, as a hard rock, under uniaxial compression test. One aim of this study is to determine which of the loading conditions has a stronger effect on rock fatigue response. The fatigue response of hard rocks and soft rocks is also compared. It is shown that the loading amplitude is the most important factor affecting the cyclic response of the tested rocks. The more the loading amplitude, the shorter the fatigue life, and the greater the strength degradation. The granodiorite specimens showed more strength degradation compared to the sandstone specimens when subjected to cyclic loading. It is shown that failure modes of specimens under cyclic loadings are different from those under static loadings. More local cracks were observed under cyclic loadings especially for granodiorite rock specimens.展开更多
Surface roughness and shape play an important role on the behavior of particles in various processes such as flotation. In this re- search, the influence of different grinding methods on the surface roughness and shap...Surface roughness and shape play an important role on the behavior of particles in various processes such as flotation. In this re- search, the influence of different grinding methods on the surface roughness and shape characteristics of quartz particles as well as the effect of these parameters on the flotation of the particles was investigated. The surface roughness of the particles was determined by measuring their specific surface area via the gas adsorption method. The shape characteristics of the particles were measured and calculated by images obtained by scanning electron microscopy via an image analysis system. The flotation kinetics was determined using a laboratory flotation cell. The results showed that the particles of rod mill products have higher roughness and elongation ratio and lower roundness than the parti- cles of ball mill products. The flotation kinetics constant of the particles increased with their surface roughness increasing. Particles with higher elongation and lower roundness indicated higher floatability. In addition, the influence of the surface roughness on the flotation kinet- ics was greater than that of shape parameters.展开更多
This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-E...This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters.展开更多
A direct solvent extraction(DSX) process for purifying nickel and cobalt from the nitric acid leach solution of nickel laterite ores was conceived and experimentally probed. The proposed process consists of two solv...A direct solvent extraction(DSX) process for purifying nickel and cobalt from the nitric acid leach solution of nickel laterite ores was conceived and experimentally probed. The proposed process consists of two solvent extraction(SX) steps but with only one extractant - bis(2,4,4-trimethylpentyl)phosphinic acid(Cyanex? 272) - used in both steps. The first extraction step involved the removal of aluminum and zinc, whereas the second extraction step involved the separation of cobalt along with manganese from nickel. The experimental results showed essentially quantitative removal of aluminum(〉97%) and zinc(〉99%) in a single extraction stage using 20vol% Cyanex 272 at pH 2.1. Some cobalt(32%) and manganese(55%) were co-extracted but were easily scrubbed out completely from the loaded organic phase using dilute sulfuric acid at pH ≤ 1.38. Cobalt and manganese in the first extraction raffinate were extracted completely in four extraction stages at staggered pH values of 4.0, 4.4, 4.5, and 4.0 in the first, second, third, and fourth stages, respectively, using also 20vol% Cyanex 272. A small amount of nickel(up to 6.6%) was co-extracted but was easily scrubbed out completely with dilute sulfuric acid at pH 2.0. A flow diagram showing the input and output conditions and the metals separated under the deduced optimum conditions is presented.展开更多
The increasing use of diesel-powered equipment in confined spaces(underground mines) has the potential to over expose underground miners under the threat of diesel particulate matter(DPM). Miners in underground mines ...The increasing use of diesel-powered equipment in confined spaces(underground mines) has the potential to over expose underground miners under the threat of diesel particulate matter(DPM). Miners in underground mines can be exposed to DPM concentrations far more than works in other industries. A great number of animal and epidemiological studies have shown that both short-term and long-term DPM exposure have adverse health effect. Based on reviews of related studies, especially some recent evidence, this paper investigated the long and short-term health effects based on animal studies and epidemiological studies. The exposure-response relationship studies were also explored and compared to the current DPM regulation or standards in some countries. This paper found that the DPM health effect studies specifically for miners are not sufficient to draw solid conclusions, and a recommendation limit of DPM concentration can be put in place for better protection of miners from DPM health risk. Current animal studies lack the use of species that have similar lung functions as human for understanding the cancer mode of action in human. And finally, the DPM health hazard will continue to be a challenging topic before the mode of action and reliable exposure-response relationship are established.展开更多
Development of deep underground mining projects is crucial for optimum extraction of mineral deposits.The main challenges at great depth are high rock stress levels,seismic events,large-scale deformation,sudden failur...Development of deep underground mining projects is crucial for optimum extraction of mineral deposits.The main challenges at great depth are high rock stress levels,seismic events,large-scale deformation,sudden failures and high temperatures that may cause abrupt and unpredictable instability and collapse over a large scale.In this paper,a ground control and management strategy was presented corresponding to the three stages of projects:strategic design,tactical design and operational design.Strategic design is results in preparing a broad plan and primary design for mining excavations.The tactical design is to provide detail design such as stabilisation methods.Operational design stage is related to monitoring and updating design parameters.The most effective ground control strategies in this stage are maintenance,rehabilitation,monitoring and contingency plan.Additionally,a new procedure for design of ground support systems for deep and hard rock was proposed.The main principles are:static and/or dynamic loading types,determination of loading sources,characterisation of geological conditions and the effects of orientation of major structures with openings,estimation of ground loading factor,identification of potential primary and secondary failures,utilisation of appropriate design analysis methods,estimation of depth failure,calculation of the static and/or dynamic demand ground support capacity,and selection of surface and reinforcement elements.Gravitational force is the dominant loading force in low-level stresses.In high stress level failure mechanism becomes more complex in rock mass structures.In this condition,a variety of factors such as release of stored energy due to seismic events,stress concentration,and major structures influence on ground behaviour and judgement are very complicated.The key rock engineering schemes to minimise the risk of failures in high-stress levels at great depth involve depressurisation and quality control of materials.Microseismic and blast monitoring throughout the mining operations are required to control sudden failures.Proper excavation sequences in underground stopes based on top-down,bottom-up,centre-out and abutment-centre were discussed.Also,the performance of a ground support system was examined by field observation monitoring systems for controlling and modifying ground support elements.The important outcome of the research is that the proposed procedure of selecting ground support systems for static and dynamic situations was applied in several deep underground mines in Western Australia.Ground behaviour modes and failure mechanism were identified and assessed.Ground demand for static and dynamic conditions was estimated and an appropriate ground support system was selected and evaluated in site-specific conditions according to proposed method for ground support design at great depth.The stability of rock masses was confirmed,and the reliability of the design methodology for great depth and hard rock conditions was also justified.展开更多
In the cationic flotation of pyrolusite using dodecyl ammine(DDA),the depressive effect of sodium carbonate andcalcium chloride on the calcite mineral was investigated systematically through flotation experiments,FTIR...In the cationic flotation of pyrolusite using dodecyl ammine(DDA),the depressive effect of sodium carbonate andcalcium chloride on the calcite mineral was investigated systematically through flotation experiments,FTIR analysis,contact anglemeasurements and zeta potential tests.The microflotation experiments showed that both depressant agents decrease the flotationrecovery of calcite significantly.In addition,sodium carbonate acts as activator agent for pyrolusite,and increases its floatability.Theflotation experiments and contact angle measurements indicated that the selective depression effect of sodium carbonate on thecalcite mineral is more than that of calcium chloride.As evidenced by zeta potential and FT-IR analysis,sodium carbonate decreasesthe negative charges on the surface of calcite mineral and subsequently reduces the adsorption of DDA collector through electrostaticforces.At a pH of7.5,using2000g/t DDA and1500g/t sodium carbonate,a pyrolusite concentrate containing almost40%MnOwith71.5%recovery is achieved by carrying out the ore flotation experiments on the tabling pre-concentrate.展开更多
Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have ...Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation.展开更多
The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not o...The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not only on rank but also on the composition,distribution,and combination of the macerals.Unlike the proximate and ultimate analyses,determining the macerals in coal involves the use of sophisticated microscopic instrumentation and expertise.In this study,an attempt was made to predict the amount of macerals(vitrinite,inertinite,and liptinite)and total mineral matter from the Witbank Coalfields samples using the multiple input single output white-box artificial neural network(MISOWB-ANN),gene expression programming(GEP),multiple linear regression(MLR),and multiple nonlinear regression(MNLR).The predictive models obtained from the multiple soft computing models adopted are contrasted with one another using difference,efficiency,and composite statistical indicators to examine the appropriateness of the models.The MISOWB-ANN provides a more reliable predictive model than the other three models with the lowest difference and highest efficiency and composite statistical indicators.展开更多
Effects of welding current on temperature and velocity fields during gas metal arc welding(GMAW) of commercially pure aluminum were simulated. Equations of conservation of mass, energy and momentum were solved in a th...Effects of welding current on temperature and velocity fields during gas metal arc welding(GMAW) of commercially pure aluminum were simulated. Equations of conservation of mass, energy and momentum were solved in a three-dimensional transient model using FLOW-3 D software. The mathematical model considered buoyancy and surface tension driving forces. Further, effects of droplet heat content and impact force on weld pool surface deformation were added to the model. The results of simulation showed that an increase in the welding current could increase peak temperature and the maximum velocity in the weld pool. The weld pool dimensions and width of the heat-affected zone(HAZ) were enlarged by increasing the welding current. In addition, dimensionless Peclet, Grashof and surface tension Reynolds numbers were calculated to understand the importance of heat transfer by convection and the roles of various driving forces in the weld pool. In order to validate the model, welding experiments were conducted under several welding currents. The predicted weld pool dimensions were compared with the corresponding experimental results, and good agreement between simulation and preliminary test results was achieved.展开更多
Influences of gap size and cyclic-thermal-shock treatment on the mechanical properties of transient liquid phase(TLP) bonded IN-738 LC superalloy were investigated. For this purpose, TLP bonding of IN-738 LC superal...Influences of gap size and cyclic-thermal-shock treatment on the mechanical properties of transient liquid phase(TLP) bonded IN-738 LC superalloy were investigated. For this purpose, TLP bonding of IN-738 LC superalloy was carried out in a vacuum furnace using powdered AMS 4777 as the filler metal. The results showed that isothermal solidified zone(ISZ) consisted of Ni solid-solution and the distribution of alloying elements was homogeneous. High hardness of HV 409 and high shear strength of 506 MPa were observed in 40 μm gap sample. Alloying elements formed γ′ precipitates and the solid-solution in the ISZ. Hardness and shear strength of bonds were reduced with increasing the gap size(in range of 40-120 μm). The fractured surfaces of complete isothermal solidified bonds showed dimpled rupture, but athermal solidified bonds showed cleavage fracture surface. 10, 20, 30 and 40 thermal-shock cycles were applied to 80 μm gap samples, respectively. The shear strength of the bond was measured to be 268 MPa after the 40 th thermal-shock cycle. The sample with gap size of 80 μm was failed due to crack nucleation on faying surface at 45 th thermal-shock cycle. The amount of the produced brittleness due to quenching the samples in water bath was attributed to the number of thermal-shock cycles.展开更多
Cyclic voltammetry and potentiodynamic polarization analyses were utilized to investigate the mechanism and kinetics of glycine leaching reactions for chalcopyrite.The effects of pH(9−12),temperature(30−90℃)and glyci...Cyclic voltammetry and potentiodynamic polarization analyses were utilized to investigate the mechanism and kinetics of glycine leaching reactions for chalcopyrite.The effects of pH(9−12),temperature(30−90℃)and glycine concentration(0−2 mol/L)on corrosion current density,corrosion potential and cyclic voltammograms were investigated using chalcopyrite concentrate−carbon paste electrodes.Results showed that an increase in the glycine concentration from 0 to 2 mol/L led to an increased oxidation peak current density.Under the same conditions,corrosion current density was found to change from approximately 28 to 89μA/cm2,whereas corrosion potential was decreased from−80 to−130 mV.Elevated temperatures enhanced the measured current densities up to 60℃;however,above this level,current density was observed to decrease.A similar current density behavior was determined with pH.A pH change from 9 to 10.5 resulted in an increase in current density and pH higher than 10.5 gave rise to a reduced current density.In addition,the thermodynamic stability of copper and iron oxides was found to increase at higher temperatures.展开更多
The effect of conventional thermal pretreatment on the surface properties of ilmenite and its accompanied gangue minerals was investigated using flotation experiments(microflotation and laboratory cell flotation),XRD,...The effect of conventional thermal pretreatment on the surface properties of ilmenite and its accompanied gangue minerals was investigated using flotation experiments(microflotation and laboratory cell flotation),XRD,XPS and FT-IR analysis and zeta potential and contact angle measurements.After treatment at 600℃ for 25 min as optimal condition,the floatability of ilmenite is improved from 73.5%to 91%at a pH value of 6.3.As demonstrated by XRD and XPS analysis,under this pretreatment condition,the Fe^(3+)content increases by almost 16.5%without any phase decomposition and structural changes in ilmenite.FT-IR analysis and contact angle and zeta potential measurements give evidences that the improvement of ilmenite floatability can be related to the enhancement of collector adsorption and the formation of a more insoluble hydrophobic layer of ferric iron oleate.The ore flotation experiments show that the thermal pretreatment process without making a significant change in TiO2 content of ilmenite concentrate enhances the TiO2 recovery from 65.4%to 73.7%.展开更多
The present study initially investigates the kinetics of microwave-assisted grinding and flotation in a porphyry copper deposit.Kinetic tests were conducted on untreated and microwave-irradiated samples by varying the...The present study initially investigates the kinetics of microwave-assisted grinding and flotation in a porphyry copper deposit.Kinetic tests were conducted on untreated and microwave-irradiated samples by varying the exposure time from 15 to 150 s.Optical microscopy,energy-dispersive X-ray spectroscopy,and scanning electron microscopy were conducted to determine the mineral liberation and particle surface properties,and to perform mineralogical analyses.Results showed that the ore breakage rate constant monotonically increased by increasing the exposure time,particularly for the coarsest fraction size(400μm)due to the creation of thermal stress fractures alongside grain boundaries.Excessive irradiation time(>60 s)led to the creation of oxidized and porous surfaces along with a dramatic change in particle morphologies that result in a substantial reduction of chalcopyrite and pyrite flotation rate constants and ultimate recoveries.We concluded that MW-pretreated copper ore was ground faster than the untreated variety,but the two types have slightly similar floatabilities.展开更多
Selective separation of gallium from aluminum by ion flotation using sodium dodecyl sulfate(SDS) as an anionic surfactant and fluoride as an inorganic ligand was investigated. The experimental results were analyzed us...Selective separation of gallium from aluminum by ion flotation using sodium dodecyl sulfate(SDS) as an anionic surfactant and fluoride as an inorganic ligand was investigated. The experimental results were analyzed using the stability constants and speciation diagrams of fluoride metal complexes. The presence of fluoride in the solution has a positive influence upon the separation of gallium from aluminum. The results show that increasing the fluoride concentration makes a more effective separation of gallium from aluminum because of a simultaneous increase in the complexion of aluminum with fluoride and a change in the electrical charge of the aluminum(ALF_4^-). The dehydration model of LIU and DOYLE was also applied to compare the ion flotation and the selectivity coefficients of gallium over aluminum with experimental results.展开更多
Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models...Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.展开更多
基金The support of Iran National Science Foundation(INSF)(Grant No.91051732)
文摘The relationships between microhardness and microstructure, macrostructure and mechanical properties of friction stir welded joints AA6061-T913 were studied. Three equations were suggested to predict the grain size, ultimate tensile strength and yield strength from the hardness throughout the weld. Two-dimensional contour of grain size and three-dimensional maps of ultimate tensile and yield strengths were plotted according to the proposed equations. Also, the location of macroscopic zones was estimated based on hardness distribution. The modeling results were compared with the results obtained from microscopy and tensile tests. The modeling results show good agreement with the experimental findings, and the average differences between them for the ultimate tensile strength and yield strength were about 8% and 3%, respectively.
文摘Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine.
文摘The alkaline leaching of arsenic (As2O3) by Na2S, together with its precipitation by Fe2(SO4)3 was studied. Response surface methodology based on central composite design was employed to quantify and qualify the effect of pertinent factors and to develop statistical models for optimization purposes. Based on the obtained results, 89% of arsenic is removed from the dust under following optimum predicted conditions: Na2S concentration of 100 g/L and solid to liquid ratio of 0.163 g/mL at 80 °C. It is found that solid to liquid ratio and Na2S concentration are the significant factors influencing the leaching process. In the precipitation process, more than 99.93% of arsenic from the leaching solution is removed in the form of amorphous ferric arsenate, at pH 4.8 when Fe3+ to arsenic and H2O2 to arsenic molar ratios are set at 5:1 and 4:1, respectively. Also, Fe3+ to arsenic ratio and pH are the most significant factors, and the interaction between these terms is significant.
文摘WC-Co hard metal was furnace brazed by Ag-Cu-Zn+Ni/Mn filler alloy using a tube furnace under high-purity argon at730°C.The influence of brazing time and gap size of joints was studied.The results revealed the maximum shear strength of(156±7)MPa for samples with150μm gap size at a holding time15min.The characterization and microstructure of the brazed joints were characterized by SEM,EDS and XRD.The results showed that increasing the time from5to15min could provide a better chance for the liquid interlayer to flow towards the base metal.However,the formation of some metallic phases such as Mn3W3C at brazing time longer than15min resulted in decreased shear strength of the joint.
基金Mining Research Institute of Western Australia (MRIWA) for the financial support
文摘Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks under cyclic loading fail at much lower strength as compared to those subjected to the monotonic loading conditions. A few selected cored granodiorite and sandstone specimens have been subjected to uniaxial cyclic compression tests to obtain the unconfined fatigue strength and life. This study seeks to examine the effects of cyclic loading conditions, loading amplitude and applied stress level on the fatigue life of sandstone, as a soft rock, and granodiorite, as a hard rock, under uniaxial compression test. One aim of this study is to determine which of the loading conditions has a stronger effect on rock fatigue response. The fatigue response of hard rocks and soft rocks is also compared. It is shown that the loading amplitude is the most important factor affecting the cyclic response of the tested rocks. The more the loading amplitude, the shorter the fatigue life, and the greater the strength degradation. The granodiorite specimens showed more strength degradation compared to the sandstone specimens when subjected to cyclic loading. It is shown that failure modes of specimens under cyclic loadings are different from those under static loadings. More local cracks were observed under cyclic loadings especially for granodiorite rock specimens.
文摘Surface roughness and shape play an important role on the behavior of particles in various processes such as flotation. In this re- search, the influence of different grinding methods on the surface roughness and shape characteristics of quartz particles as well as the effect of these parameters on the flotation of the particles was investigated. The surface roughness of the particles was determined by measuring their specific surface area via the gas adsorption method. The shape characteristics of the particles were measured and calculated by images obtained by scanning electron microscopy via an image analysis system. The flotation kinetics was determined using a laboratory flotation cell. The results showed that the particles of rod mill products have higher roughness and elongation ratio and lower roundness than the parti- cles of ball mill products. The flotation kinetics constant of the particles increased with their surface roughness increasing. Particles with higher elongation and lower roundness indicated higher floatability. In addition, the influence of the surface roughness on the flotation kinet- ics was greater than that of shape parameters.
文摘This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters.
基金the Indonesia Endowment Fund for Education(LPDP)for the scholarship of Z.T.Ichlas,Shell Chemicals for supplying ShellS ol 2046 and Cytec Australia for supplying Cyanex 272
文摘A direct solvent extraction(DSX) process for purifying nickel and cobalt from the nitric acid leach solution of nickel laterite ores was conceived and experimentally probed. The proposed process consists of two solvent extraction(SX) steps but with only one extractant - bis(2,4,4-trimethylpentyl)phosphinic acid(Cyanex? 272) - used in both steps. The first extraction step involved the removal of aluminum and zinc, whereas the second extraction step involved the separation of cobalt along with manganese from nickel. The experimental results showed essentially quantitative removal of aluminum(〉97%) and zinc(〉99%) in a single extraction stage using 20vol% Cyanex 272 at pH 2.1. Some cobalt(32%) and manganese(55%) were co-extracted but were easily scrubbed out completely from the loaded organic phase using dilute sulfuric acid at pH ≤ 1.38. Cobalt and manganese in the first extraction raffinate were extracted completely in four extraction stages at staggered pH values of 4.0, 4.4, 4.5, and 4.0 in the first, second, third, and fourth stages, respectively, using also 20vol% Cyanex 272. A small amount of nickel(up to 6.6%) was co-extracted but was easily scrubbed out completely with dilute sulfuric acid at pH 2.0. A flow diagram showing the input and output conditions and the metals separated under the deduced optimum conditions is presented.
文摘The increasing use of diesel-powered equipment in confined spaces(underground mines) has the potential to over expose underground miners under the threat of diesel particulate matter(DPM). Miners in underground mines can be exposed to DPM concentrations far more than works in other industries. A great number of animal and epidemiological studies have shown that both short-term and long-term DPM exposure have adverse health effect. Based on reviews of related studies, especially some recent evidence, this paper investigated the long and short-term health effects based on animal studies and epidemiological studies. The exposure-response relationship studies were also explored and compared to the current DPM regulation or standards in some countries. This paper found that the DPM health effect studies specifically for miners are not sufficient to draw solid conclusions, and a recommendation limit of DPM concentration can be put in place for better protection of miners from DPM health risk. Current animal studies lack the use of species that have similar lung functions as human for understanding the cancer mode of action in human. And finally, the DPM health hazard will continue to be a challenging topic before the mode of action and reliable exposure-response relationship are established.
基金supported by Curtin International Postgraduate Scholarship(CIPRS)/Department of Mining and Metallurgy Scholarshippartly supported by National Natural Science Foundation of China the 111 Project under grant Nos.51839003 and B17009.
文摘Development of deep underground mining projects is crucial for optimum extraction of mineral deposits.The main challenges at great depth are high rock stress levels,seismic events,large-scale deformation,sudden failures and high temperatures that may cause abrupt and unpredictable instability and collapse over a large scale.In this paper,a ground control and management strategy was presented corresponding to the three stages of projects:strategic design,tactical design and operational design.Strategic design is results in preparing a broad plan and primary design for mining excavations.The tactical design is to provide detail design such as stabilisation methods.Operational design stage is related to monitoring and updating design parameters.The most effective ground control strategies in this stage are maintenance,rehabilitation,monitoring and contingency plan.Additionally,a new procedure for design of ground support systems for deep and hard rock was proposed.The main principles are:static and/or dynamic loading types,determination of loading sources,characterisation of geological conditions and the effects of orientation of major structures with openings,estimation of ground loading factor,identification of potential primary and secondary failures,utilisation of appropriate design analysis methods,estimation of depth failure,calculation of the static and/or dynamic demand ground support capacity,and selection of surface and reinforcement elements.Gravitational force is the dominant loading force in low-level stresses.In high stress level failure mechanism becomes more complex in rock mass structures.In this condition,a variety of factors such as release of stored energy due to seismic events,stress concentration,and major structures influence on ground behaviour and judgement are very complicated.The key rock engineering schemes to minimise the risk of failures in high-stress levels at great depth involve depressurisation and quality control of materials.Microseismic and blast monitoring throughout the mining operations are required to control sudden failures.Proper excavation sequences in underground stopes based on top-down,bottom-up,centre-out and abutment-centre were discussed.Also,the performance of a ground support system was examined by field observation monitoring systems for controlling and modifying ground support elements.The important outcome of the research is that the proposed procedure of selecting ground support systems for static and dynamic situations was applied in several deep underground mines in Western Australia.Ground behaviour modes and failure mechanism were identified and assessed.Ground demand for static and dynamic conditions was estimated and an appropriate ground support system was selected and evaluated in site-specific conditions according to proposed method for ground support design at great depth.The stability of rock masses was confirmed,and the reliability of the design methodology for great depth and hard rock conditions was also justified.
文摘In the cationic flotation of pyrolusite using dodecyl ammine(DDA),the depressive effect of sodium carbonate andcalcium chloride on the calcite mineral was investigated systematically through flotation experiments,FTIR analysis,contact anglemeasurements and zeta potential tests.The microflotation experiments showed that both depressant agents decrease the flotationrecovery of calcite significantly.In addition,sodium carbonate acts as activator agent for pyrolusite,and increases its floatability.Theflotation experiments and contact angle measurements indicated that the selective depression effect of sodium carbonate on thecalcite mineral is more than that of calcium chloride.As evidenced by zeta potential and FT-IR analysis,sodium carbonate decreasesthe negative charges on the surface of calcite mineral and subsequently reduces the adsorption of DDA collector through electrostaticforces.At a pH of7.5,using2000g/t DDA and1500g/t sodium carbonate,a pyrolusite concentrate containing almost40%MnOwith71.5%recovery is achieved by carrying out the ore flotation experiments on the tabling pre-concentrate.
文摘Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation.
文摘The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not only on rank but also on the composition,distribution,and combination of the macerals.Unlike the proximate and ultimate analyses,determining the macerals in coal involves the use of sophisticated microscopic instrumentation and expertise.In this study,an attempt was made to predict the amount of macerals(vitrinite,inertinite,and liptinite)and total mineral matter from the Witbank Coalfields samples using the multiple input single output white-box artificial neural network(MISOWB-ANN),gene expression programming(GEP),multiple linear regression(MLR),and multiple nonlinear regression(MNLR).The predictive models obtained from the multiple soft computing models adopted are contrasted with one another using difference,efficiency,and composite statistical indicators to examine the appropriateness of the models.The MISOWB-ANN provides a more reliable predictive model than the other three models with the lowest difference and highest efficiency and composite statistical indicators.
文摘Effects of welding current on temperature and velocity fields during gas metal arc welding(GMAW) of commercially pure aluminum were simulated. Equations of conservation of mass, energy and momentum were solved in a three-dimensional transient model using FLOW-3 D software. The mathematical model considered buoyancy and surface tension driving forces. Further, effects of droplet heat content and impact force on weld pool surface deformation were added to the model. The results of simulation showed that an increase in the welding current could increase peak temperature and the maximum velocity in the weld pool. The weld pool dimensions and width of the heat-affected zone(HAZ) were enlarged by increasing the welding current. In addition, dimensionless Peclet, Grashof and surface tension Reynolds numbers were calculated to understand the importance of heat transfer by convection and the roles of various driving forces in the weld pool. In order to validate the model, welding experiments were conducted under several welding currents. The predicted weld pool dimensions were compared with the corresponding experimental results, and good agreement between simulation and preliminary test results was achieved.
文摘Influences of gap size and cyclic-thermal-shock treatment on the mechanical properties of transient liquid phase(TLP) bonded IN-738 LC superalloy were investigated. For this purpose, TLP bonding of IN-738 LC superalloy was carried out in a vacuum furnace using powdered AMS 4777 as the filler metal. The results showed that isothermal solidified zone(ISZ) consisted of Ni solid-solution and the distribution of alloying elements was homogeneous. High hardness of HV 409 and high shear strength of 506 MPa were observed in 40 μm gap sample. Alloying elements formed γ′ precipitates and the solid-solution in the ISZ. Hardness and shear strength of bonds were reduced with increasing the gap size(in range of 40-120 μm). The fractured surfaces of complete isothermal solidified bonds showed dimpled rupture, but athermal solidified bonds showed cleavage fracture surface. 10, 20, 30 and 40 thermal-shock cycles were applied to 80 μm gap samples, respectively. The shear strength of the bond was measured to be 268 MPa after the 40 th thermal-shock cycle. The sample with gap size of 80 μm was failed due to crack nucleation on faying surface at 45 th thermal-shock cycle. The amount of the produced brittleness due to quenching the samples in water bath was attributed to the number of thermal-shock cycles.
文摘Cyclic voltammetry and potentiodynamic polarization analyses were utilized to investigate the mechanism and kinetics of glycine leaching reactions for chalcopyrite.The effects of pH(9−12),temperature(30−90℃)and glycine concentration(0−2 mol/L)on corrosion current density,corrosion potential and cyclic voltammograms were investigated using chalcopyrite concentrate−carbon paste electrodes.Results showed that an increase in the glycine concentration from 0 to 2 mol/L led to an increased oxidation peak current density.Under the same conditions,corrosion current density was found to change from approximately 28 to 89μA/cm2,whereas corrosion potential was decreased from−80 to−130 mV.Elevated temperatures enhanced the measured current densities up to 60℃;however,above this level,current density was observed to decrease.A similar current density behavior was determined with pH.A pH change from 9 to 10.5 resulted in an increase in current density and pH higher than 10.5 gave rise to a reduced current density.In addition,the thermodynamic stability of copper and iron oxides was found to increase at higher temperatures.
文摘The effect of conventional thermal pretreatment on the surface properties of ilmenite and its accompanied gangue minerals was investigated using flotation experiments(microflotation and laboratory cell flotation),XRD,XPS and FT-IR analysis and zeta potential and contact angle measurements.After treatment at 600℃ for 25 min as optimal condition,the floatability of ilmenite is improved from 73.5%to 91%at a pH value of 6.3.As demonstrated by XRD and XPS analysis,under this pretreatment condition,the Fe^(3+)content increases by almost 16.5%without any phase decomposition and structural changes in ilmenite.FT-IR analysis and contact angle and zeta potential measurements give evidences that the improvement of ilmenite floatability can be related to the enhancement of collector adsorption and the formation of a more insoluble hydrophobic layer of ferric iron oleate.The ore flotation experiments show that the thermal pretreatment process without making a significant change in TiO2 content of ilmenite concentrate enhances the TiO2 recovery from 65.4%to 73.7%.
基金Amirkabir University of Technology(Iran)and Helmholtz Institute Freiberg for Research Technology(Germany)for supporting this research work。
文摘The present study initially investigates the kinetics of microwave-assisted grinding and flotation in a porphyry copper deposit.Kinetic tests were conducted on untreated and microwave-irradiated samples by varying the exposure time from 15 to 150 s.Optical microscopy,energy-dispersive X-ray spectroscopy,and scanning electron microscopy were conducted to determine the mineral liberation and particle surface properties,and to perform mineralogical analyses.Results showed that the ore breakage rate constant monotonically increased by increasing the exposure time,particularly for the coarsest fraction size(400μm)due to the creation of thermal stress fractures alongside grain boundaries.Excessive irradiation time(>60 s)led to the creation of oxidized and porous surfaces along with a dramatic change in particle morphologies that result in a substantial reduction of chalcopyrite and pyrite flotation rate constants and ultimate recoveries.We concluded that MW-pretreated copper ore was ground faster than the untreated variety,but the two types have slightly similar floatabilities.
基金the Iran National Elites FoundationIranian Mines&Mining Industries Development&the Renovation and Geological Survey of Iran for financial support
文摘Selective separation of gallium from aluminum by ion flotation using sodium dodecyl sulfate(SDS) as an anionic surfactant and fluoride as an inorganic ligand was investigated. The experimental results were analyzed using the stability constants and speciation diagrams of fluoride metal complexes. The presence of fluoride in the solution has a positive influence upon the separation of gallium from aluminum. The results show that increasing the fluoride concentration makes a more effective separation of gallium from aluminum because of a simultaneous increase in the complexion of aluminum with fluoride and a change in the electrical charge of the aluminum(ALF_4^-). The dehydration model of LIU and DOYLE was also applied to compare the ion flotation and the selectivity coefficients of gallium over aluminum with experimental results.
文摘Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.