Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Walle...Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.展开更多
The molecular chaperone HSP60 is a chaperonin homolog of GroEL. We had previously shown that the immunosuppressant mizoribine is bound directly to HSP60 and inhibited its chaperone activity. However, the inhibitory me...The molecular chaperone HSP60 is a chaperonin homolog of GroEL. We had previously shown that the immunosuppressant mizoribine is bound directly to HSP60 and inhibited its chaperone activity. However, the inhibitory mechanisms of HSP60 by mizoribine have not yet been fully understood. In the present study, we investigated the influence of mizoribine on a folding cycle of HSP60 and co-chaperone HSP10. Our results showed that mizoribine inhibited the folding cycle of HSP60/HSP10. The ATPase activity of HSP60/HSP10 was decreased in the presence of mizoribine and the dissociation of HSP10 from HSP-60 was also decreased by mizoribine. The same functions of GroEL and/or GroES were slightly affected by mizoribine. Based on our findings, we discuss the inhibitory mechanisms of HSP60 by mizoribine.展开更多
A global increase in the incidence of pancreatic cancer(PanCa)presents a major concern and health burden.The traditional tissue-based diagnostic techniques provided a major way forward for molecular diagnostics;howeve...A global increase in the incidence of pancreatic cancer(PanCa)presents a major concern and health burden.The traditional tissue-based diagnostic techniques provided a major way forward for molecular diagnostics;however,they face limitations based on diagnosis-associated difficulties and concerns surrounding tissue availability in the clinical setting.Late disease development with asymptomatic behavior is a drawback in the case of existing diagnostic procedures.The capability of cell free markers in discriminating PanCa from autoimmune pancreatitis and chronic pancreatitis along with other precancerous lesions can be a boon to clinicians.Early-stage diagnosis of PanCa can be achieved only if these biomarkers specifically discriminate the non-carcinogenic disease stage from malignancy with respect to tumor stages.In this review,we comprehensively described the non-invasive disease detection approaches and why these approaches are gaining popularity for their early-stage diagnostic capability and associated clinical feasibility.展开更多
Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripher...Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.展开更多
Inflammatory responses are essential in eliminating harmful substrates from damaged tissue and inducing recovery.Several cytokines participate in and facilitate this response. Certain cytokines such as interleukin(IL...Inflammatory responses are essential in eliminating harmful substrates from damaged tissue and inducing recovery.Several cytokines participate in and facilitate this response. Certain cytokines such as interleukin(IL)-1β and IL-18 are initially produced in precursor form in response to toll-like receptor(TLR) ligands and undergo maturation by inflammasomes, which are cytosolic multi-protein complexes containing nucleotide-binding oligomerization domain(NOD)-containing protein 2-like receptors(NLRs). Immune modulators targeting inflammasomes have been investigated to control inflammatory diseases such as metabolic syndrome. However, most immune modulators possessing anti-inflammasome properties attenuate production of other cytokines, which are essential for host defense. In this review, we analyzed the effect of anti-inflammasome agents on the production of cytokines which are not regulated by inflammasome and involving in initial immune responses. As a result, the infiammasome inhibitors are put into three categories: non-effector, stimulator, or inhibitor of cytokine production. Even the stimulator of cytokine production ameliorated symptoms resulting from inflammasome activation in mouse models. Thus, we suggest ideal immune modulators targeting inflammasomes in order to enhance cytokine production while inhibiting cytokine maturation.展开更多
This review addresses the accumulating evidence that live(not decellularized)allogeneic peripheral nerves are functionally and immunologically peculiar in comparison with many other transplanted allogeneic tissues.Thi...This review addresses the accumulating evidence that live(not decellularized)allogeneic peripheral nerves are functionally and immunologically peculiar in comparison with many other transplanted allogeneic tissues.This is relevant because live peripheral nerve allografts are very effective at promoting recovery after segmental peripheral nerve injury via axonal regeneration and axon fusion.Understanding the immunological peculiarities of peripheral nerve allografts may also be of interest to the field of transplantation in general.Three topics are addressed:The first discusses peripheral nerve injury and the potential utility of peripheral nerve allografts for bridging segmental peripheral nerve defects via axon fusion and axon regeneration.The second reviews evidence that peripheral nerve allografts elicit a more gradual and less severe host immune response allowing for prolonged survival and function of allogeneic peripheral nerve cells and structures.Lastly,potential mechanisms that may account for the immunological differences of peripheral nerve allografts are discussed.展开更多
The homologous genes FLORICAULA (FLO) in Antirrhinum and LEAFY (LFY) in Arabidopsis are known to regu- late the initiation of flowering in these two distantly related plant species. These genes are necessary also for ...The homologous genes FLORICAULA (FLO) in Antirrhinum and LEAFY (LFY) in Arabidopsis are known to regu- late the initiation of flowering in these two distantly related plant species. These genes are necessary also for the expression of downstream genes that control floral organ identity. We used Arabidopsis LFY cDNA as a probe to clone and sequence a papaya ortholog of LFY, PFL. It encodes a protein that shares 61% identity with the Arabidopsis LFY gene and 71% identity with the LFY homologs of the two woody tree species: California sycamore (Platanus racemosa) and black cottonwood (Populus trichocarpa). Despite the high sequence similarity within two conserved regions, the N-terminal proline-rich motif in papaya PFL differs from other members in the family. This difference may not affect the gene function of papaya PFL, since an equally divergent but a functional LFY ortholog NEEDLY of Pinus radiata has been reported. Genomic and BAC Southern analyses indicated that there is only one copy of PFL in the papaya genome. In situ hybridization experiments demonstrated that PFL is expressed at a relatively low level in leaf primordia, but it is expressed at a high level in the floral meristem. Quantitative PCR analyses revealed that PFL was expressed in flower buds of all three sex types - male, female, and hermaphrodite with marginal difference between hermaphrodite and unisexual flowers. These data suggest that PFL may play a similar role as LFY in flower development and has limited effect on sex differentiation in papaya.展开更多
Medicinal plants and herbal preparations are gaining renowned interest in scientific communities nowadays due to their reliable pharmacological actions and affordability to common people which makes them effective in ...Medicinal plants and herbal preparations are gaining renowned interest in scientific communities nowadays due to their reliable pharmacological actions and affordability to common people which makes them effective in control of various diseases.Polygonum minus(Polygonaceae)locally known as kesuni is an aromatic plant commonly used in Malay delicacies.The plant is having potential applications due to its high volatile oil constituents in perfumes and powerful antioxidant activity.It has been used traditionally to treat various ailments including dandruff.The research has been carried out by various researchers using different in vitro and in vivo models for biological evaluations to support these claims.This review paper may help upcoming research activities on Polygonum minus by giving up to date information on the phytochemical constituents and medicinal properties of kesum to a possible extent with relevant data.展开更多
Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Hi...Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Highly dispersed 100–300-nm deposits of composite multivalent metal oxides of Mn(Mn^2+), Mn^3+,and Mn^4+, Fe(Fe^2+)and Fe^3+ and Mg(Mg^2+), or Ce(Ce^4+) were achieved on Al2O3 supports. The developed Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 exhibited higher catalytic activity during the ozonation of PRW-ROC than Mn–Fe/Al2O3, Mn/Al2O-3, Fe/Al2O3, and Al2O3. Chemical oxygen demand removal by Mn–Fe–Mg/Al2O3-or Mn–Fe–Ce/Al2O3-catalyzed ozonation increased by 23.9% and23.2%, respectively, in comparison with single ozonation.Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 notably promoted áOH generation and áOH-mediated oxidation. This study demonstrated the potential use of composite metal oxide-loaded Al2O3 in advanced treatment of bio-recalcitrant wastewaters.展开更多
Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of...Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to synthesize sustainable fuels and chemicals. Carbon deposition or coke formation, a primary cause of catalyst deactivation, has proven to be a major challenge in the development of DRM catalysts. The use of nickel-and cobalt-based catalysts has been extensively explored for DRM for their high activity and low cost but suffer from poor stability due to coke formation that has hindered their commercialization. Numerous articles have reviewed the various aspects of catalyst deactivation and strategies for mitigation, but few has focused on the benefit of bimetallic catalysts for mitigating coke formation. Bimetallic catalysts, often improve the catalytic stability over their monometallic counterparts due to synergistic effects resulting from two metal-tometal interactions. This review will cover DRM literature for various bimetallic catalyst systems, including the effect of supports and promoters, on the mitigation of carbonaceous deactivation.展开更多
Essential oil has been used as sedatives,anticonvulsants,and local anesthetics in traditional medical remedies;as preservatives for food,fruit,vegetable,and grain storage;and as bio-pesticides for food production.Lina...Essential oil has been used as sedatives,anticonvulsants,and local anesthetics in traditional medical remedies;as preservatives for food,fruit,vegetable,and grain storage;and as bio-pesticides for food production.Linalool(LL),along with a few other major components such as methyl eugenol(ME),estragole(EG),and citronellal,are the active chemicals in many essential oils such as basil oil.Basil oil and the aforementioned monoterpenoids are potent against insect pests.However,the molecular mechanism of action of these chemical constituents is not well understood.It is well-known that the c-aminobutyric acid type A receptors(GABAARs)and nicotinic acetylcholine receptor(nAChR)are primary molecular targets of the synthetic insecticides used in the market today.Furthermore,the GABAAR-targeted therapeutics have been used in clinics for many decades,including barbiturates and benzodiazepines,to name just a few.In this research,we studied the electrophysiological effects of LL,ME,EG,and citronellal on GABAAR and nAChR to further understand their versatility as therapeutic agents in traditional remedies and as insecticides.Our results revealed that LL inhibits both GABAAR and nAChR,which may explain its insecticidal activity.LL is a concentration-dependent,noncompetitive inhibitor on GABAAR,as the half-maximal effective concentration(EC50)values of c-aminobutyric acid(GABA)for the rat a1b3c2L GABAAR were not affected by LL:(36.2±7.9)lmol-1 and(36.1±23.8)μmol·L-1 in the absence and presence of 5 mmol·L-1 LL,respectively.The half-maximal inhibitory concentration(IC50)of LL on GABAAR was approximately 3.2 mmol·L-1.Considering that multiple monoterpenoids are found within the same essential oil,it is likely that LL has a synergistic effect with ME,which has been previously characterized as both a GABAAR agonist and a positive allosteric modulator,and with other monoterpenoids,which offers a possible explanation for the sedative and anticonvulsant effects and the insecticidal activities of LL.展开更多
The present study aims to develop effective adsorption and oxidation of synthetic dye in wastewater by using the newly synthesized iron-amended activated carbon. Recently synthetic dye-containing wastewater has gained...The present study aims to develop effective adsorption and oxidation of synthetic dye in wastewater by using the newly synthesized iron-amended activated carbon. Recently synthetic dye-containing wastewater has gained more attention due to its mass discharge, high toxicity and low biodegradation. For enhancing adsorption of dye and oxidative regeneration of dye-exhausted activated carbon, the novel amendment of iron-deposited granular activated carbon (GAC) was developed. It was to amend ferrous ion onto the acid-pretreated GAC when pH of iron solution was higher than the pH at point of zero charge (pH, pzc) of the GAC. Methylene blue (MB) in water was adsorbed onto the acid-treated iron- amended GAC (Fe-GAC) followed by single or multiple applications of H2O2. Batch experiments were carried out to study the adsorption isotherm and kinetics indicating adsorption of MB onto the Fe-GAC followed Langmuir isotherm and the pseudo-second order kinetics. The Fe-GACshowed the maximum adsorption capacity (qm) of 238.1 ± 0.78 mg/g which was higher than the virgin GAC with qm of 175.4 ± 13.6 mg/g at 20?C, pH 6 and the initial concentration of 20 - 200 mg/L. The heterogeneous Fenton oxidation of MB in the Fe-GAC revealedthat increasing the H2O2 loading from 7 to 140 mmol H2O2/mmol MB led to enhancing the oxidation efficiency of MB in the GAC from 62.6% to 100% due to the increased generation of hydroxyl radicals. Further enhancement of oxidation of MB in the Fe-GAC was made by the multiple application of H2O2 while minimizing OH radical scavenging often occurring at high concentration of H2O2. Therefore, the acid-treated iron-amended GAC would provide excellent adsorption capacity for MB and high oxidation efficiency of MB in the GAC with multiple applications of H2O2 and optimum iron loading.展开更多
There is a great interest in developing cost-efficient nutrients to stimulate microorganisms in indigenous microbial enhanced oil recovery(IMEOR) processes.In the present study,the potential of rice bran as a carbon...There is a great interest in developing cost-efficient nutrients to stimulate microorganisms in indigenous microbial enhanced oil recovery(IMEOR) processes.In the present study,the potential of rice bran as a carbon source for promoting IMEOR was investigated on a laboratory scale.The co-applications of rice bran,K2HPO4 and urea under optimized bio-stimulation conditions significantly increased the production of gases,acids and emulsifiers.The structure and diversity of microbial community greatly changed during the IMEOR process,in which Clostridium sp.,Acidobacteria sp.,Bacillus sp.,and Pseudomonas sp.were dominant.Pressurization,acidification and emulsification due to microbial activities and interactions markedly improved the IMEOR processes.This study indicated that rice bran is a potential carbon source for IMEOR.展开更多
Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases.Ca^2+- dependent kinases and phosphatases are res...Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases.Ca^2+- dependent kinases and phosphatases are responsible for controlling neuronal processing;balance is achieved through opposition.During molecular mechanisms of learning and memory,kinases generally modulate positively while phosphatases modulate negatively.This review outlines some of the critical physiological and structural aspects of kinases and phosphatases involved in maintaining postsynaptic structural plasticity.It also explores the link between neuronal disorders and the deregulation of phosphatases and kinases.展开更多
Double helix DNAs become intertwined around one another during replication and recombination.Here we used magnetic tweezers to make braided DNA molecules and measured their torques under various catenations(Ca)at forc...Double helix DNAs become intertwined around one another during replication and recombination.Here we used magnetic tweezers to make braided DNA molecules and measured their torques under various catenations(Ca)at forces ranging from 0.3 to 8 pN.Images of braided DNA constructs under tensions were captured by scanning electron microscopy which showed major and minor grooves of DNAs and plectonemes of the braids.When the two DNA molecules were braided,the extension decreased as the catenation increased from 0 to 50 turns.We used a thermodynamic Maxwell relation to deduce the torque by integrating the change in the braid extension as a function of the force.The torque increased with the catenation,force and intertether distance until the catenation reached a buckling point.Under the condition of 2 pN force and Ca=20,the torque was computed to be 31,21 and 15 pN nm for the braids of which the intertether distances were 54%,31%and 26%of the DNA contour length,respectively.At an 8.03 pN holding force,the torque was computed to be 76 pN nm as the catenation increased from 0 to 30 turns,or as the catenation density varied from 0 to 0.053.The torque reached a plateau when the catenation increased above 20,indicating formation of braid-plectonemes.The twist modulus increased with the catenation prior to reaching a peak.Before reaching the peak,the moduli were higher than those of a single twisted DNA under the same catenation and applied force.Our experimental data agrees well with the calculation results by a recently developed semiflexible polymer model.Our measurements of the nonlinear torque of the braid establish new fundamental properties of DNA intertwining,which is key to understanding DNA replication and gene expression.The speaker will also introduce briefly other projects in the Xiao group including direct measurements of theforce spectrum of single unlabeled proteins such as adhesive nano-fibers for biofilm,the screening of integrin-targeted peptides drugs by single cell approaches,and the micromechanical approach for determining the survival rate of stem cells.展开更多
As one of the most widely used assays in biological research,an enumeration of the bacterial cell colonies is an important but time-consuming and labor-intensive process.To speed up the colony counting,a machine learn...As one of the most widely used assays in biological research,an enumeration of the bacterial cell colonies is an important but time-consuming and labor-intensive process.To speed up the colony counting,a machine learning method is presented for counting the colony forming units(CFUs),which is referred to as CFUCounter.This cellcounting program processes digital images and segments bacterial colonies.The algorithm combines unsupervised machine learning,iterative adaptive thresholding,and local-minima-based watershed segmentation to enable an accurate and robust cell counting.Compared to a manual counting method,CFUCounter supports color-based CFU classification,allows plates containing heterologous colonies to be counted individually,and demonstrates overall performance(slope 0.996,SD 0.013,95%CI:0.97–1.02,p value<1e-11,r=0.999)indistinguishable from the gold standard of point-and-click counting.This CFUCounter application is open-source and easy to use as a unique addition to the arsenal of colony-counting tools.展开更多
AIM: To evaluate whether the Q-switched Nd:YAG laser treatment applied in routine capsulotomy elicits oxidative stress in aqueous and vitreous humors. METHODS: Thirty-six patients who had to undergo a 25 gauge par...AIM: To evaluate whether the Q-switched Nd:YAG laser treatment applied in routine capsulotomy elicits oxidative stress in aqueous and vitreous humors. METHODS: Thirty-six patients who had to undergo a 25 gauge pars plana vitrectomy due to vitreoretinal disorders were enrolled, 15 of them underwent a Q-switched Nd:YAG laser capsulotomy 7 d before vitrectomy due to posterior capsule opacification(PCO)(Nd:YAG laser group) while the remaining 21 patients were not laser treated before vitrectomy(no Nd:YAG laser group). Samples of the aqueous and vitreous humors were collected during vitrectomy from all patients for the assessment of oxidative parameters which were compared between the Nd:YAG laser group and no Nd:YAG laser group. Thiobarbituric acid reactive substances(TBARS), a product of membrane lipid peroxidation, nitrite levels, the antioxidative activities of SOD and catalase, the 4-HNE-protein conjugate formation, indicating structural modifications in proteins due to lipoperoxidation, were assessed in aqueous and vitreous samples. RESULTS: In the human vitreous humor TBARS levels are significantly higher in the Nd:YAG laser group compared to the no Nd:YAG laser group and importantly, there is a significant correlation between the TBARS levels and the total energy of Nd:YAG laser used during capsulotomy.Moreover the anti-oxidative activities of SOD and catalase were significantly decreased by Nd:YAG laser treatment, both in aqueous and vitreous humors. In accordance with the TBARS data and anti-oxidative enzyme activities, significantly higher levels of proteins were conjugated with the lipoperoxidation product 4-HNE in the aqueous and vitreous humors in the Nd:YAG laser-treated group in comparison to no Nd:YAG laser group. CONCLUSION: These data, clearly suggest that any change that Q-switched Nd:YAG photo disruption may cause in the aqueous and vitreous compartments, resulting in a higher level of oxidative damage might be of considerable clinical significance particularly by accelerating the aging of the anterior and posterior segments of the eye and by worsening the intraocular pressure, the uveal, the retinal(especially macular) pathologies.展开更多
5-Substituted benzylidene 3-acylthiotetronic acids are antifungal.A series of 3-acylthiotetronic acid derivatives with varying substitutions at the 5-position were designed,synthesized,and characterized,based on the b...5-Substituted benzylidene 3-acylthiotetronic acids are antifungal.A series of 3-acylthiotetronic acid derivatives with varying substitutions at the 5-position were designed,synthesized,and characterized,based on the binding pose of 3-acyl thiolactone with the protein C171Q KasA.Fungicidal activities of these compounds were screened against Valsa Mali,Curvularia lunata,Fusarium graminearum,and Fusarium oxysporum f.sp.lycopersici.Most target compounds exhibited excellent fungicidal activities against target fungi at the concentration of 50μg·mL-1.Compounds 11c and 11i displayed the highest activity with a broad spectrum.The median effective concentration(EC50)values of 11c and 11i were 1.9–10.7 and 3.1–7.8μg·mL-1,respectively,against the tested fungi,while the EC50 values of the fungicides azoxystrobin,carbendazim,and fluopyram were respectively 0.30,4.22,and>50μg·mL-1 against V.Mali;6.7,41.7,and 0.18μg·mL-1 against C.lunata;22.4,0.42,and 0.43μg·mL-1 against F.graminearum;and 4.3,0.12,and>50μg·mL-1 against F.oxysporum f.sp.lycopersici.The structures and activities of the target compounds against C.lunata were analyzed to obtain a statistically significant comparative molecular field analysis(CoMFA)model with high prediction abilities(q2=0.9816,r2=0.8060),and its reliability was verified.The different substituents on the benzylidene at the 5-position had significant effects on the activity,while the introduction of a halogen atom at the benzene ring of benzylidene was able to improve the activity against the tested fungi.展开更多
Aim: To elucidate the anti-apoptotic properties of nuclear factor kappa light-chain-enhancer of activated B cells (NF-κB) and feedback regulation of NF-κB by nuclear factor of kappa light-chain-enhancer of activated...Aim: To elucidate the anti-apoptotic properties of nuclear factor kappa light-chain-enhancer of activated B cells (NF-κB) and feedback regulation of NF-κB by nuclear factor of kappa light-chain-enhancer of activated B-cells inhibitor alpha (IκBα). Methods: We developed an in vitro model of Sjogren’s syndrome by transfecting human salivary gland (HSG) and acinar cells (NS-SV-AC) with a plasmid-encoding IκBαM (pCMV-IκBαM), a degradation-resistant IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha)-mutant, and examined TNF-induced apoptosis and anti-apoptotic properties of NF-κB. Apoptosis and induction of pro-apoptotic and anti-apoptotic genes were investigated by cDNA arrays, RT-PCR, electrophoretic mobility shift assays, and western blot. Results: In the presence of NF-κB inhibitors, TNF-induced apoptosis was markedly increased in both salivary gland and acinar cells. Increased caspase-3 activity was present in both HSG and NS-SV-AC cells. IκBαM-transfected salivary gland cells were more sensitive to TNF-induced apoptosis than IκBαM-transfected acinar cells. Transcription of pro-apoptotic genes was confirmed in both HSG and NS-SV-AC cells that were transfected with IκBαM. Results from caspase-3 activity assay confirmed previous experiments showing an apoptotic role for NF-κB. Conclusion: Data from gene expression arrays suggest that different mechanisms may operate during TNF-induced apoptosis in salivary gland ductal and acinar cells.展开更多
Neonicotinoids(NEOs),a large class of organic compounds,are a type of commonly used pesticide for crop protection.Their uptake and accumulation in plants are prerequisites for their intra-and intercellular move-ments,...Neonicotinoids(NEOs),a large class of organic compounds,are a type of commonly used pesticide for crop protection.Their uptake and accumulation in plants are prerequisites for their intra-and intercellular move-ments,transformation,and function.Understanding the molecular mechanisms that underpin NEO uptake by plants is crucial for effective application,which remains elusive.Here,we demonstrate that NEOs enter plant cells primarily through the transmembrane symplastic pathway and accumulate mainly in the cytosol.Two plasma membrane intrinsic proteins discovered in Brassica rapa,BraPIP1;1 and BraPIP2;1,were found to encode aquaporins(AQPs)that are highly permeable to NEOs in different plant species and facilitate NEO subcellular diffusion and accumulation.Their conserved transport function was further demonstrated in Xenopus laevis oocyte and yeast assays.BraPIP1;1 and BraPIP2;1 gene knockouts and interaction as-says suggested that their proteins can form functional heterotetramers.Assessment of the potential of mean force indicated a negative correlation between NEO uptake and the energy barrier of BraPIP1;1 chan-nels.This study shows that AQPs transport organic compounds with greater osmolarity than previously thought,providing new insight into the molecular mechanisms of organic compound uptake and facilitating innovations in systemic pesticides.展开更多
基金supported by DOD AFIRMⅢW81XWH-20-2-0029 subcontract,UT POC19-1774-13Neuraptive Therapeutics Inc.26-7724-56+1 种基金NIH R01-NS128086 grantsLone Star Paralysis gift(to GDB)。
文摘Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.
文摘The molecular chaperone HSP60 is a chaperonin homolog of GroEL. We had previously shown that the immunosuppressant mizoribine is bound directly to HSP60 and inhibited its chaperone activity. However, the inhibitory mechanisms of HSP60 by mizoribine have not yet been fully understood. In the present study, we investigated the influence of mizoribine on a folding cycle of HSP60 and co-chaperone HSP10. Our results showed that mizoribine inhibited the folding cycle of HSP60/HSP10. The ATPase activity of HSP60/HSP10 was decreased in the presence of mizoribine and the dissociation of HSP10 from HSP-60 was also decreased by mizoribine. The same functions of GroEL and/or GroES were slightly affected by mizoribine. Based on our findings, we discuss the inhibitory mechanisms of HSP60 by mizoribine.
基金Supported by the Department of Biotechnology,Government of India Grant Sanction,Ramalingaswami Re-entry Fellowship,No.RLS/BT/Re-entry/05/2012.
文摘A global increase in the incidence of pancreatic cancer(PanCa)presents a major concern and health burden.The traditional tissue-based diagnostic techniques provided a major way forward for molecular diagnostics;however,they face limitations based on diagnosis-associated difficulties and concerns surrounding tissue availability in the clinical setting.Late disease development with asymptomatic behavior is a drawback in the case of existing diagnostic procedures.The capability of cell free markers in discriminating PanCa from autoimmune pancreatitis and chronic pancreatitis along with other precancerous lesions can be a boon to clinicians.Early-stage diagnosis of PanCa can be achieved only if these biomarkers specifically discriminate the non-carcinogenic disease stage from malignancy with respect to tumor stages.In this review,we comprehensively described the non-invasive disease detection approaches and why these approaches are gaining popularity for their early-stage diagnostic capability and associated clinical feasibility.
基金supported by grants from the Lone Star Paralysis Foundation,NIH R01NS081063Department of Defense award W81XWH-19-2-0054 to GDB+2 种基金supported by University of Wyoming Startup funds,Department of Defense grant W81XWH-17-1-0402the University of Wyoming Sensory Biology COBRE under National Institutes of Health(NIH)award number 5P20GM121310-02the National Institute of General Medical Sciences of the NIH under award number P20GM103432 to JSB。
文摘Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.
基金supported by 2015 Research Grant from Kangwon National University(No.520150280)
文摘Inflammatory responses are essential in eliminating harmful substrates from damaged tissue and inducing recovery.Several cytokines participate in and facilitate this response. Certain cytokines such as interleukin(IL)-1β and IL-18 are initially produced in precursor form in response to toll-like receptor(TLR) ligands and undergo maturation by inflammasomes, which are cytosolic multi-protein complexes containing nucleotide-binding oligomerization domain(NOD)-containing protein 2-like receptors(NLRs). Immune modulators targeting inflammasomes have been investigated to control inflammatory diseases such as metabolic syndrome. However, most immune modulators possessing anti-inflammasome properties attenuate production of other cytokines, which are essential for host defense. In this review, we analyzed the effect of anti-inflammasome agents on the production of cytokines which are not regulated by inflammasome and involving in initial immune responses. As a result, the infiammasome inhibitors are put into three categories: non-effector, stimulator, or inhibitor of cytokine production. Even the stimulator of cytokine production ameliorated symptoms resulting from inflammasome activation in mouse models. Thus, we suggest ideal immune modulators targeting inflammasomes in order to enhance cytokine production while inhibiting cytokine maturation.
基金supported by University of Wyoming Startup Funds,United States Department of Defense,grant No.W81XWH-17-1-0402the University of Wyoming Sensory Biology COBRE under National Institutes of Health(NIH),award number 5P20GM121310-02+2 种基金the National Institute of General Medical Sciences of the NIH under Award Number P20GM103432(to JSB)the Lone Star Paralysis Foundation,NIH R01NS081063Department of Defense award W81XWH-19-2-0054 to GDB。
文摘This review addresses the accumulating evidence that live(not decellularized)allogeneic peripheral nerves are functionally and immunologically peculiar in comparison with many other transplanted allogeneic tissues.This is relevant because live peripheral nerve allografts are very effective at promoting recovery after segmental peripheral nerve injury via axonal regeneration and axon fusion.Understanding the immunological peculiarities of peripheral nerve allografts may also be of interest to the field of transplantation in general.Three topics are addressed:The first discusses peripheral nerve injury and the potential utility of peripheral nerve allografts for bridging segmental peripheral nerve defects via axon fusion and axon regeneration.The second reviews evidence that peripheral nerve allografts elicit a more gradual and less severe host immune response allowing for prolonged survival and function of allogeneic peripheral nerve cells and structures.Lastly,potential mechanisms that may account for the immunological differences of peripheral nerve allografts are discussed.
文摘The homologous genes FLORICAULA (FLO) in Antirrhinum and LEAFY (LFY) in Arabidopsis are known to regu- late the initiation of flowering in these two distantly related plant species. These genes are necessary also for the expression of downstream genes that control floral organ identity. We used Arabidopsis LFY cDNA as a probe to clone and sequence a papaya ortholog of LFY, PFL. It encodes a protein that shares 61% identity with the Arabidopsis LFY gene and 71% identity with the LFY homologs of the two woody tree species: California sycamore (Platanus racemosa) and black cottonwood (Populus trichocarpa). Despite the high sequence similarity within two conserved regions, the N-terminal proline-rich motif in papaya PFL differs from other members in the family. This difference may not affect the gene function of papaya PFL, since an equally divergent but a functional LFY ortholog NEEDLY of Pinus radiata has been reported. Genomic and BAC Southern analyses indicated that there is only one copy of PFL in the papaya genome. In situ hybridization experiments demonstrated that PFL is expressed at a relatively low level in leaf primordia, but it is expressed at a high level in the floral meristem. Quantitative PCR analyses revealed that PFL was expressed in flower buds of all three sex types - male, female, and hermaphrodite with marginal difference between hermaphrodite and unisexual flowers. These data suggest that PFL may play a similar role as LFY in flower development and has limited effect on sex differentiation in papaya.
基金supported by Universiti Malaysia Kelantan(Grant No.R/SGJP/A07.00/00710A/001/2012/000081)
文摘Medicinal plants and herbal preparations are gaining renowned interest in scientific communities nowadays due to their reliable pharmacological actions and affordability to common people which makes them effective in control of various diseases.Polygonum minus(Polygonaceae)locally known as kesuni is an aromatic plant commonly used in Malay delicacies.The plant is having potential applications due to its high volatile oil constituents in perfumes and powerful antioxidant activity.It has been used traditionally to treat various ailments including dandruff.The research has been carried out by various researchers using different in vitro and in vivo models for biological evaluations to support these claims.This review paper may help upcoming research activities on Polygonum minus by giving up to date information on the phytochemical constituents and medicinal properties of kesum to a possible extent with relevant data.
基金supported in part by the National Science and Technology Major Project of China (No. 2016ZX05040-003)
文摘Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Highly dispersed 100–300-nm deposits of composite multivalent metal oxides of Mn(Mn^2+), Mn^3+,and Mn^4+, Fe(Fe^2+)and Fe^3+ and Mg(Mg^2+), or Ce(Ce^4+) were achieved on Al2O3 supports. The developed Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 exhibited higher catalytic activity during the ozonation of PRW-ROC than Mn–Fe/Al2O3, Mn/Al2O-3, Fe/Al2O3, and Al2O3. Chemical oxygen demand removal by Mn–Fe–Mg/Al2O3-or Mn–Fe–Ce/Al2O3-catalyzed ozonation increased by 23.9% and23.2%, respectively, in comparison with single ozonation.Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 notably promoted áOH generation and áOH-mediated oxidation. This study demonstrated the potential use of composite metal oxide-loaded Al2O3 in advanced treatment of bio-recalcitrant wastewaters.
基金supported in part by the National Science Foundation under Grant No. 1955521the Donors of the American Chemical Society Petroleum Research Fund,for partial support of this work+1 种基金supported in part by the U.S. Department of Energy,Office of Science,Office of Workforce Development for Teachers and Scientists (WDTS)under the Science Undergraduate Laboratory Internships Program(SULI) and Visiting Faculty Program (VFP)Brookhaven National Laboratory (BNL) was supported by the U.S. Department of Energy (DOE),grant DE-SC0012704。
文摘Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to synthesize sustainable fuels and chemicals. Carbon deposition or coke formation, a primary cause of catalyst deactivation, has proven to be a major challenge in the development of DRM catalysts. The use of nickel-and cobalt-based catalysts has been extensively explored for DRM for their high activity and low cost but suffer from poor stability due to coke formation that has hindered their commercialization. Numerous articles have reviewed the various aspects of catalyst deactivation and strategies for mitigation, but few has focused on the benefit of bimetallic catalysts for mitigating coke formation. Bimetallic catalysts, often improve the catalytic stability over their monometallic counterparts due to synergistic effects resulting from two metal-tometal interactions. This review will cover DRM literature for various bimetallic catalyst systems, including the effect of supports and promoters, on the mitigation of carbonaceous deactivation.
基金This project was supported by grants from Bayer AG Crop Science(Grant4Targets 201701018)the National Center for Research Resources(5P20RR016467-11)the National Institute of General Medical Sciences(P20GM103466)of the National Institutes of Health.
文摘Essential oil has been used as sedatives,anticonvulsants,and local anesthetics in traditional medical remedies;as preservatives for food,fruit,vegetable,and grain storage;and as bio-pesticides for food production.Linalool(LL),along with a few other major components such as methyl eugenol(ME),estragole(EG),and citronellal,are the active chemicals in many essential oils such as basil oil.Basil oil and the aforementioned monoterpenoids are potent against insect pests.However,the molecular mechanism of action of these chemical constituents is not well understood.It is well-known that the c-aminobutyric acid type A receptors(GABAARs)and nicotinic acetylcholine receptor(nAChR)are primary molecular targets of the synthetic insecticides used in the market today.Furthermore,the GABAAR-targeted therapeutics have been used in clinics for many decades,including barbiturates and benzodiazepines,to name just a few.In this research,we studied the electrophysiological effects of LL,ME,EG,and citronellal on GABAAR and nAChR to further understand their versatility as therapeutic agents in traditional remedies and as insecticides.Our results revealed that LL inhibits both GABAAR and nAChR,which may explain its insecticidal activity.LL is a concentration-dependent,noncompetitive inhibitor on GABAAR,as the half-maximal effective concentration(EC50)values of c-aminobutyric acid(GABA)for the rat a1b3c2L GABAAR were not affected by LL:(36.2±7.9)lmol-1 and(36.1±23.8)μmol·L-1 in the absence and presence of 5 mmol·L-1 LL,respectively.The half-maximal inhibitory concentration(IC50)of LL on GABAAR was approximately 3.2 mmol·L-1.Considering that multiple monoterpenoids are found within the same essential oil,it is likely that LL has a synergistic effect with ME,which has been previously characterized as both a GABAAR agonist and a positive allosteric modulator,and with other monoterpenoids,which offers a possible explanation for the sedative and anticonvulsant effects and the insecticidal activities of LL.
文摘The present study aims to develop effective adsorption and oxidation of synthetic dye in wastewater by using the newly synthesized iron-amended activated carbon. Recently synthetic dye-containing wastewater has gained more attention due to its mass discharge, high toxicity and low biodegradation. For enhancing adsorption of dye and oxidative regeneration of dye-exhausted activated carbon, the novel amendment of iron-deposited granular activated carbon (GAC) was developed. It was to amend ferrous ion onto the acid-pretreated GAC when pH of iron solution was higher than the pH at point of zero charge (pH, pzc) of the GAC. Methylene blue (MB) in water was adsorbed onto the acid-treated iron- amended GAC (Fe-GAC) followed by single or multiple applications of H2O2. Batch experiments were carried out to study the adsorption isotherm and kinetics indicating adsorption of MB onto the Fe-GAC followed Langmuir isotherm and the pseudo-second order kinetics. The Fe-GACshowed the maximum adsorption capacity (qm) of 238.1 ± 0.78 mg/g which was higher than the virgin GAC with qm of 175.4 ± 13.6 mg/g at 20?C, pH 6 and the initial concentration of 20 - 200 mg/L. The heterogeneous Fenton oxidation of MB in the Fe-GAC revealedthat increasing the H2O2 loading from 7 to 140 mmol H2O2/mmol MB led to enhancing the oxidation efficiency of MB in the GAC from 62.6% to 100% due to the increased generation of hydroxyl radicals. Further enhancement of oxidation of MB in the Fe-GAC was made by the multiple application of H2O2 while minimizing OH radical scavenging often occurring at high concentration of H2O2. Therefore, the acid-treated iron-amended GAC would provide excellent adsorption capacity for MB and high oxidation efficiency of MB in the GAC with multiple applications of H2O2 and optimum iron loading.
基金supported in part by the National Natural Science Foundation of China (Nos. 51209216 and 21306229)the Korean RDA Grant (No. PJ009472)
文摘There is a great interest in developing cost-efficient nutrients to stimulate microorganisms in indigenous microbial enhanced oil recovery(IMEOR) processes.In the present study,the potential of rice bran as a carbon source for promoting IMEOR was investigated on a laboratory scale.The co-applications of rice bran,K2HPO4 and urea under optimized bio-stimulation conditions significantly increased the production of gases,acids and emulsifiers.The structure and diversity of microbial community greatly changed during the IMEOR process,in which Clostridium sp.,Acidobacteria sp.,Bacillus sp.,and Pseudomonas sp.were dominant.Pressurization,acidification and emulsification due to microbial activities and interactions markedly improved the IMEOR processes.This study indicated that rice bran is a potential carbon source for IMEOR.
文摘Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases.Ca^2+- dependent kinases and phosphatases are responsible for controlling neuronal processing;balance is achieved through opposition.During molecular mechanisms of learning and memory,kinases generally modulate positively while phosphatases modulate negatively.This review outlines some of the critical physiological and structural aspects of kinases and phosphatases involved in maintaining postsynaptic structural plasticity.It also explores the link between neuronal disorders and the deregulation of phosphatases and kinases.
基金supported by the National Science Foundation of China ( 11772133, 11372116)the Fundamental Research Funds for the Central Universities ( HUST 0118012051)supported by the NIH through grants ( R01-GM105847,U54-CA193419)
文摘Double helix DNAs become intertwined around one another during replication and recombination.Here we used magnetic tweezers to make braided DNA molecules and measured their torques under various catenations(Ca)at forces ranging from 0.3 to 8 pN.Images of braided DNA constructs under tensions were captured by scanning electron microscopy which showed major and minor grooves of DNAs and plectonemes of the braids.When the two DNA molecules were braided,the extension decreased as the catenation increased from 0 to 50 turns.We used a thermodynamic Maxwell relation to deduce the torque by integrating the change in the braid extension as a function of the force.The torque increased with the catenation,force and intertether distance until the catenation reached a buckling point.Under the condition of 2 pN force and Ca=20,the torque was computed to be 31,21 and 15 pN nm for the braids of which the intertether distances were 54%,31%and 26%of the DNA contour length,respectively.At an 8.03 pN holding force,the torque was computed to be 76 pN nm as the catenation increased from 0 to 30 turns,or as the catenation density varied from 0 to 0.053.The torque reached a plateau when the catenation increased above 20,indicating formation of braid-plectonemes.The twist modulus increased with the catenation prior to reaching a peak.Before reaching the peak,the moduli were higher than those of a single twisted DNA under the same catenation and applied force.Our experimental data agrees well with the calculation results by a recently developed semiflexible polymer model.Our measurements of the nonlinear torque of the braid establish new fundamental properties of DNA intertwining,which is key to understanding DNA replication and gene expression.The speaker will also introduce briefly other projects in the Xiao group including direct measurements of theforce spectrum of single unlabeled proteins such as adhesive nano-fibers for biofilm,the screening of integrin-targeted peptides drugs by single cell approaches,and the micromechanical approach for determining the survival rate of stem cells.
基金This research was funded by a VPR Special Research Grant entitled Potential of a Site-Specific DNA Interstrand Crosslink.
文摘As one of the most widely used assays in biological research,an enumeration of the bacterial cell colonies is an important but time-consuming and labor-intensive process.To speed up the colony counting,a machine learning method is presented for counting the colony forming units(CFUs),which is referred to as CFUCounter.This cellcounting program processes digital images and segments bacterial colonies.The algorithm combines unsupervised machine learning,iterative adaptive thresholding,and local-minima-based watershed segmentation to enable an accurate and robust cell counting.Compared to a manual counting method,CFUCounter supports color-based CFU classification,allows plates containing heterologous colonies to be counted individually,and demonstrates overall performance(slope 0.996,SD 0.013,95%CI:0.97–1.02,p value<1e-11,r=0.999)indistinguishable from the gold standard of point-and-click counting.This CFUCounter application is open-source and easy to use as a unique addition to the arsenal of colony-counting tools.
基金Supported by Public Universitary Funds(NUZR_autof_17_01)of University of Torinothe Italian Ministry for Research MIUR(No.2010C2LKKJ-007+1 种基金No.20154JRJPP-005)the Ph D and Post-doc Program of the University of Torino
文摘AIM: To evaluate whether the Q-switched Nd:YAG laser treatment applied in routine capsulotomy elicits oxidative stress in aqueous and vitreous humors. METHODS: Thirty-six patients who had to undergo a 25 gauge pars plana vitrectomy due to vitreoretinal disorders were enrolled, 15 of them underwent a Q-switched Nd:YAG laser capsulotomy 7 d before vitrectomy due to posterior capsule opacification(PCO)(Nd:YAG laser group) while the remaining 21 patients were not laser treated before vitrectomy(no Nd:YAG laser group). Samples of the aqueous and vitreous humors were collected during vitrectomy from all patients for the assessment of oxidative parameters which were compared between the Nd:YAG laser group and no Nd:YAG laser group. Thiobarbituric acid reactive substances(TBARS), a product of membrane lipid peroxidation, nitrite levels, the antioxidative activities of SOD and catalase, the 4-HNE-protein conjugate formation, indicating structural modifications in proteins due to lipoperoxidation, were assessed in aqueous and vitreous samples. RESULTS: In the human vitreous humor TBARS levels are significantly higher in the Nd:YAG laser group compared to the no Nd:YAG laser group and importantly, there is a significant correlation between the TBARS levels and the total energy of Nd:YAG laser used during capsulotomy.Moreover the anti-oxidative activities of SOD and catalase were significantly decreased by Nd:YAG laser treatment, both in aqueous and vitreous humors. In accordance with the TBARS data and anti-oxidative enzyme activities, significantly higher levels of proteins were conjugated with the lipoperoxidation product 4-HNE in the aqueous and vitreous humors in the Nd:YAG laser-treated group in comparison to no Nd:YAG laser group. CONCLUSION: These data, clearly suggest that any change that Q-switched Nd:YAG photo disruption may cause in the aqueous and vitreous compartments, resulting in a higher level of oxidative damage might be of considerable clinical significance particularly by accelerating the aging of the anterior and posterior segments of the eye and by worsening the intraocular pressure, the uveal, the retinal(especially macular) pathologies.
基金This work was financially supported in part by the National Natural Science Foundation of China(31901906)the Opening Project of Shanghai Key Laboratory of Chemical Biology,the Natural Science Foundation of Anhui Province,China(1808085QC71)+1 种基金the Natural Science Foundation of Anhui Education Department(KJ2016A834)the US Department of Agriculture(USDA:HAW5032-R).
文摘5-Substituted benzylidene 3-acylthiotetronic acids are antifungal.A series of 3-acylthiotetronic acid derivatives with varying substitutions at the 5-position were designed,synthesized,and characterized,based on the binding pose of 3-acyl thiolactone with the protein C171Q KasA.Fungicidal activities of these compounds were screened against Valsa Mali,Curvularia lunata,Fusarium graminearum,and Fusarium oxysporum f.sp.lycopersici.Most target compounds exhibited excellent fungicidal activities against target fungi at the concentration of 50μg·mL-1.Compounds 11c and 11i displayed the highest activity with a broad spectrum.The median effective concentration(EC50)values of 11c and 11i were 1.9–10.7 and 3.1–7.8μg·mL-1,respectively,against the tested fungi,while the EC50 values of the fungicides azoxystrobin,carbendazim,and fluopyram were respectively 0.30,4.22,and>50μg·mL-1 against V.Mali;6.7,41.7,and 0.18μg·mL-1 against C.lunata;22.4,0.42,and 0.43μg·mL-1 against F.graminearum;and 4.3,0.12,and>50μg·mL-1 against F.oxysporum f.sp.lycopersici.The structures and activities of the target compounds against C.lunata were analyzed to obtain a statistically significant comparative molecular field analysis(CoMFA)model with high prediction abilities(q2=0.9816,r2=0.8060),and its reliability was verified.The different substituents on the benzylidene at the 5-position had significant effects on the activity,while the introduction of a halogen atom at the benzene ring of benzylidene was able to improve the activity against the tested fungi.
文摘Aim: To elucidate the anti-apoptotic properties of nuclear factor kappa light-chain-enhancer of activated B cells (NF-κB) and feedback regulation of NF-κB by nuclear factor of kappa light-chain-enhancer of activated B-cells inhibitor alpha (IκBα). Methods: We developed an in vitro model of Sjogren’s syndrome by transfecting human salivary gland (HSG) and acinar cells (NS-SV-AC) with a plasmid-encoding IκBαM (pCMV-IκBαM), a degradation-resistant IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha)-mutant, and examined TNF-induced apoptosis and anti-apoptotic properties of NF-κB. Apoptosis and induction of pro-apoptotic and anti-apoptotic genes were investigated by cDNA arrays, RT-PCR, electrophoretic mobility shift assays, and western blot. Results: In the presence of NF-κB inhibitors, TNF-induced apoptosis was markedly increased in both salivary gland and acinar cells. Increased caspase-3 activity was present in both HSG and NS-SV-AC cells. IκBαM-transfected salivary gland cells were more sensitive to TNF-induced apoptosis than IκBαM-transfected acinar cells. Transcription of pro-apoptotic genes was confirmed in both HSG and NS-SV-AC cells that were transfected with IκBαM. Results from caspase-3 activity assay confirmed previous experiments showing an apoptotic role for NF-κB. Conclusion: Data from gene expression arrays suggest that different mechanisms may operate during TNF-induced apoptosis in salivary gland ductal and acinar cells.
基金supported in part by the National Natural Science Foundation of China (nos.32172448 and 3177219)the Jiangsu Agricultural Science and Technology Innovation Fund (CX (21)2002)the National Key Research and Development Program (2021YFD1700803),and the USDA (HAW05032R).
文摘Neonicotinoids(NEOs),a large class of organic compounds,are a type of commonly used pesticide for crop protection.Their uptake and accumulation in plants are prerequisites for their intra-and intercellular move-ments,transformation,and function.Understanding the molecular mechanisms that underpin NEO uptake by plants is crucial for effective application,which remains elusive.Here,we demonstrate that NEOs enter plant cells primarily through the transmembrane symplastic pathway and accumulate mainly in the cytosol.Two plasma membrane intrinsic proteins discovered in Brassica rapa,BraPIP1;1 and BraPIP2;1,were found to encode aquaporins(AQPs)that are highly permeable to NEOs in different plant species and facilitate NEO subcellular diffusion and accumulation.Their conserved transport function was further demonstrated in Xenopus laevis oocyte and yeast assays.BraPIP1;1 and BraPIP2;1 gene knockouts and interaction as-says suggested that their proteins can form functional heterotetramers.Assessment of the potential of mean force indicated a negative correlation between NEO uptake and the energy barrier of BraPIP1;1 chan-nels.This study shows that AQPs transport organic compounds with greater osmolarity than previously thought,providing new insight into the molecular mechanisms of organic compound uptake and facilitating innovations in systemic pesticides.