The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Ra...The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Rather, dynamic exchange of proteins and membrane is needed to maintain cellular homeostasis. One of the most dramatic examples of membrane mobilization is seen during the process ofmacroautophagy. Macroautophagy is the primary cellular pathway for degradation of long-lived proteins and organelles. In response to environmental cues, such as starvation or other types of stress, the cell produces a unique membrane structure, the phagophore. The phagophore sequesters cytoplasm as it forms a double-membrane cytosolic vesicle, an autophagosome. Upon completion, the autophagosome fuses with a lysosome or a vacuole in yeast, which delivers hydrolases that break down the inner autophagosome membrane along with its cargo, and the resulting macromolecules are released back into the cytosol for reuse. Autophagy is therefore a recycling process, allowing cells to survive periods of nutrient limitation; however, it has a wider physiological role, participating in development and aging, and also in protection against pathogen invasion, cancer and certain neurodegenerative diseases. In many cases, the role ofautophagy is identified through studies of an autophagy-related protein, Atg6/Beclin 1. This protein is part of a lipid kinase complex, and recent studies suggest that it plays a central role in coordinating the cytoprotective function ofautophagy and in opposing the cellular death process of apoptosis. Here, we summarize our current knowledge ofAtg6/Beclin 1 in different model organisms and its unique function in the cell.展开更多
Objective:Transdermal drug delivery systems represent a critical focus in the pharmaceutics field;however,their use is limited by the fact that many drugs usually pass through the skin with low permeability.Menthol is...Objective:Transdermal drug delivery systems represent a critical focus in the pharmaceutics field;however,their use is limited by the fact that many drugs usually pass through the skin with low permeability.Menthol is a common penetration enhancer because of its high penetration-enhancing efficiency and safety.Our research aimed to reveal the penetrationenhancing mechanisms of menthol via a multiscale study.Methods:First,the interaction of menthol with the stratum corneum was studied using vertical Franz diffusion cells obtained from the abdominal skin of rats as a model.Then,the skin samples were observed via transmission electron microscopy.Finally,the interaction of different concentrations of menthol with a mixed lipid model of the stratum corneum was investigated via molecular dynamics simulation using the GROMOS 54A7 force field on a microcosmic level.Results:At concentrations of 3.5%or lower,menthol changed the original structure of the stratum corneum to varying degrees,which increased its fluidity and facilitated the permeation and storage of menthol.Menthol increased the fluidity of the stratum corneum mainly via two mechanisms.First,menthol had strong hydrogen-bonding capability,and it could compete for the lipidelipid hydrogen bonding sites,thereby weakening the stability of the hydrogenbonding network connecting the skin lipids.In addition,menthol had strong affinity for cholesterol,probably due to their similar molecular structures,suggesting that the incorporation of menthol would increase the fluidity of the lipid membrane similarly to cholesterol.Conclusion:The penetration-enhancing mechanism of menthol was explained using in vitro and molecular dynamics simulation methods.These findings may advance the basic research of transdermal drug delivery systems and facilitate the discoveries of novel penetration enhancers.展开更多
Identification of biological markers of cancer is a major area of research. Biomarkers could identify the presence of a tumor before it could otherwise be easily detected, and the ability to detect cancers at early st...Identification of biological markers of cancer is a major area of research. Biomarkers could identify the presence of a tumor before it could otherwise be easily detected, and the ability to detect cancers at early stages is a key factor in increasing survivability. For example, the American Cancer Society finds that a reason breast cancer survival rates are so high is that there are good methods for early detection of tumors. However, this is not the case for most cancers. For lung cancer, the five-year survival is 15%, but for the 16% of lung cancer cases diagnosed at early stages,展开更多
The mitotic activity of root apical meristem(RAM)is critical to primary root growth and development.Previous studies have identified the roles of ROOT GROWTH FACTOR 1(RGF1),a peptide ligand,and its receptors,RGF1 INSE...The mitotic activity of root apical meristem(RAM)is critical to primary root growth and development.Previous studies have identified the roles of ROOT GROWTH FACTOR 1(RGF1),a peptide ligand,and its receptors,RGF1 INSENSITIVEs(RGIs),a clade of five leucine-rich-repeat receptor-like kinases,in promoting cell division in the RAM,which determines the primary root length.However,the downstream signaling components remain elusive.In this study,we identify a complete mitogen-activated protein kinase(MAPK or MPK)cascade,composed of YDA,MKK4/MKK5,and MPK3/MPK6,that functions downstream of the RGF1-RGI ligand-receptor pair.Similar to the rgi1/2/3/4/5 quintuple mutant,loss-of-function mutants of MPK3 and MPK6,MKK4 and MKK5,or YDA show a short-root phenotype,which is associated with reduced mitotic activity and lower expression of PLETHORA 1(PLT1)/PLT2 in the RAM.Furthermore,MPK3/MPK6 activation in response to exogenous RGF1 treatment is impaired in the rgi1/2/3/4/5 quintuple,yda single,and mkk4 m kk5 double mutants.Epistatic analyses demonstrated that the expression of constitutively active MKK4,MKK5,or YDA driven by the RGI2 promoter can rescue the short-root phenotype of the rgi1/2/3/4/5 mutant.Taken together,these results suggest that the YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the RGF1-RGI ligand-receptor pair and upstream of PLT1/PLT2 to modulate the stem cell population and primary root growth in Arabidopsis.展开更多
The rice pattern recognition receptor (PRR) XA21 confers race-specific resistance in leaf infection by bacterial blight Xathornonas oryzae pv. oryzae (Xoo), and was shown to be primarily localized to the endoplasm...The rice pattern recognition receptor (PRR) XA21 confers race-specific resistance in leaf infection by bacterial blight Xathornonas oryzae pv. oryzae (Xoo), and was shown to be primarily localized to the endoplasmic reticulum (ER) when expressed with its native promoter or overexpressed in the protoplast. However, whether the protein is still ER- localization in the intact cell when overexpressed remains to be identified. Here, we showed that XA21, its kinase-dead mutant XA21PK736EP and the triple autophosphorylation mutant XA21PS686AJT688AJS699A GFP fusions were primarily localized to the plasma membrane (PM) when overexpressed in the intact transgenic rice cell, and also localized to the ER in the transgenic protoplast. The transgenic plants constitutively expressing the wild-type XA21 or its GFP fusion displayed racespecific resistance to Xoo at the adult and seedling stages. XA21 and XA21PK736EP could be internalized probably via the SCAMP-positive early endosomal compartment in the protoplast, suggesting that XA21 might be endocytosed to initiate resistance responses during pathogen infection. We also established a root infection system and demonstrated that XA21 also mediated race-specific resistance responses to Xoo in the root. Our current study provides an insight into the nature of the XA21-mediated resistance and a practical approach using the root cell system to further dissect the cellular signaling of the PRR during the rice-Xoo interaction.展开更多
ABSTRACT Recent advances in genome-wide techniques allowed the identification of thousands of non-coding RNAs with various sizes in eukaryotes, some of which have further been shown to serve important functions in man...ABSTRACT Recent advances in genome-wide techniques allowed the identification of thousands of non-coding RNAs with various sizes in eukaryotes, some of which have further been shown to serve important functions in many biologi- cal processes. However, in model plant Arabidopsis, novel intermediate-sized ncRNAs (im-ncRNAs) (50-300 nt) have very limited information. By using a modified isolation strategy combined with deep-sequencing technology, we identified 838 im-ncRNAs in Arabidopsis globally. More than half (58%) are new ncRNA species, mostly evolutionary divergent. Interestingly, annotated protein-coding genes with 5'-UTR-derived novel im-ncRNAs tend to be highly expressed. For intergenic im-ncRNAs, their average abundances were comparable to mRNAs in seedlings, but subsets exhibited signifi- cantly lower expression in senescing leaves. Further, intergenic im-ncRNAs were regulated by similar genetic and epige- netic mechanisms to those of protein-coding genes, and some showed developmentally regulated expression patterns. Large-scale reverse genetic screening showed that the down-regulation of a number of im-ncRNAs resulted in either obvious molecular changes or abnormal developmental phenotypes in vivo, indicating the functional importance of im-ncRNAs in plant growth and development. Together, our results demonstrate that novel Arabidopsis im-ncRNAs are developmentally regulated and functional components discovered in the transcriptome.展开更多
The function of lymphocytes is dependent on their plasticity,particularly their adaptation to energy availability and environmental stress,and their protein synthesis machinery.Lymphocytes are constantly under metabol...The function of lymphocytes is dependent on their plasticity,particularly their adaptation to energy availability and environmental stress,and their protein synthesis machinery.Lymphocytes are constantly under metabolic stress,and macroautophagy/autophagy is the primary metabolic pathway that helps cells overcome stressors.The intrinsic role of autophagy in regulating the metabolism of adaptive immune cells has recently gained increasing attention.In this review,we summarize and discuss the versatile roles of autophagy in regulating cellular metabolism and the implications of autophagy for immune cell function and fate,especially for T and B lymphocytes.展开更多
CSN1 is a component of the COP9 signalosome(CSN),a conserved protein complex with pleiotropic functions in many organs and cell types.CSN regulates ubiquitinproteasome dependent protein degradation via the deneddylati...CSN1 is a component of the COP9 signalosome(CSN),a conserved protein complex with pleiotropic functions in many organs and cell types.CSN regulates ubiquitinproteasome dependent protein degradation via the deneddylation and the associated deubiquitination activities.In addition,CSN associates with protein kinases and modulates cell signaling,particularly the activator protein 1(AP-1)pathway.We have shown previously that CSN1 suppresses AP-1 transcription activity and inhibits ultraviolet(UV)and serum activation of c-fos expression.Here we show that CSN1 can inhibit phosphorylation of proto-oncogene c-Jun product and repress c-Jun dependent transcription.Further,CSN1 dramatically downregulates ectopic expression of c-Jun N-terminal kinase 1(JNK1)in cultured cells.The decline in JNK1 is not caused by excessive proteolysis or by 3′UTR-dependent mRNA instability,but by CSN1-dependent repression of one or multiple steps in transcriptional and posttranscriptional mechanisms.Thus,in contrast to CSN5/Jab1,which promotes AP-1 activity,CSN1 displays a negative effect on the AP-1 pathway.Finally,we discuss about the dynamic equilibrium of the CSN complexes in regulation of the AP-1 pathway.展开更多
Wolfram syndrome (WFS; MIM 222300) is an autosomal recessive disorder with highly variable clinical manifestations. It is characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness (thus, k...Wolfram syndrome (WFS; MIM 222300) is an autosomal recessive disorder with highly variable clinical manifestations. It is characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness (thus, known as DIDMOAD syndrome) [ 1 ]. Other neurological and endocrine manifestations include dementia, psychiatric illnesses, renal-tract abnormalities, and bladder atony [2]. Gene linkage and positional cloning analysis reveal that a subset of Wolfram syndrome patients belonging to the WFS 1 group (MIM 606201) carry a loss-of-function mutation in the WFS1 gene, which encodes a transmembrane protein, Wolframin, localizing in the endoplasmic reticulm (ER) [3, 4]. Wolframin is thought to be involved in the regulation of ER stress and calcium ho- meostasis, and Wolframin deficiency in mice leads to progressive loss of β cells and impaired glucose tolerance, which is presumably caused by increased ER stress and apoptosis in the β cells.展开更多
Heterosis, or hybrid vigor, refers to the phenomenon in which hybrid progeny of two inbred varieties exhibits enhanced growth or agronomic performance. Although a century-long history of research has generated several...Heterosis, or hybrid vigor, refers to the phenomenon in which hybrid progeny of two inbred varieties exhibits enhanced growth or agronomic performance. Although a century-long history of research has generated several hypotheses regarding the genetic basis of heterosis, the molecular mechanisms underlying heterosis and heterotic gene expression remain elusive. Here, we report a genome-wide gene expression analysis of two heterotic crosses in rice, taking advantage of its fully sequenced genomes. Approximately 7-9% of the genes were differentially expressed in the seedling shoots from two sets of heterotic crosses, including many transcription factor genes, and exhibited multiple modes of gene action. Comparison of the putative promoter regions of the ortholog genes between inbred parents revealed extensive sequence variation, particularly small insertions/deletions (INDELs), many of which result in the formation/disruption of putative cis-regulatory elements. Together, these results suggest that a combinatorial interplay between expression of transcription factors and polymorphic promoter cis-regulatory elements in the hybrids is one plausible molecular mechanism underlying heterotic gene action and thus heterosis in rice.展开更多
We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and pro...We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and proteinprotein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale.展开更多
Heterosis,or hybrid vigor,is the phenomenon whereby progeny of two inbred lines exhibit superior agronomic performance compared with either parent.We analyzed the expression of miRNAs and highly expressed small RNAs ...Heterosis,or hybrid vigor,is the phenomenon whereby progeny of two inbred lines exhibit superior agronomic performance compared with either parent.We analyzed the expression of miRNAs and highly expressed small RNAs (defined according to Solexa sequencing results) in two rice (Oryza sativa) subspecies (japonica cv.Nipponbare and indica cv.93-11) and their reciprocal hybrids using microarrays.We found that of all the 1141 small RNAs tested,140 (12%,140 of 1141) and 157 (13%,157 of 1141) were identified being significantly differentially expressed in two reciprocal hybrids,respectively.All possible modes of action,including additive,high-and low-parent,above high-and below low-parent modes were exhibited.Both F1 hybrids showed non-additive expression patterns,with downregulation predominating.Interestingly,15 miRNAs displayed stark opposite expression trends relative to midparent in reciprocal hybrids.Computational prediction of targets of differentially expressed miRNAs showed that they participated in multifaceted developmental pathways,and were not distinguishable from the targets of non-differentially expressed miRNAs.Together,our findings reveal that small RNAs play roles in heterosis and add a new layer in the understanding and exploitation of molecular mechanisms of heterosis.展开更多
Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components,implicating ...Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components,implicating pectins in new molecular functions. Pectins are often localized in spatially-restricted patterns, and some of these non-uniform pectin distributions contribute to multiple aspects of plant development, including the morphogenesis of cells and organs. Furthermore, a growing number of mutants affecting cell wall composi- tion have begun to reveal the distinct contributions of different pectins to plant development. This review discusses the interactions of pectins with other cell wall components, the functions of pectins in controlling cellular morphology, and how non-uniform pectin composition can be an important determinant of developmental processes.展开更多
Background:Endothelial cells line the luminal surface of blood vessels and form a barrier between the blood and other tissues of the body.Ets variant 2(ETV2)is transiently expressed in both zebrafish and mice and is n...Background:Endothelial cells line the luminal surface of blood vessels and form a barrier between the blood and other tissues of the body.Ets variant 2(ETV2)is transiently expressed in both zebrafish and mice and is necessary and sufficient for vascular endothelial cell specification.Overexpression of this gene in early zebrafish and mouse embryos results in ectopic appearance of endothelial cells.Ectopic expression of ETV2 in later development results in only a subset of cells responding to the signal.Findings:We have examined the expression pattern of ETV2 in differentiating human embryonic stem cells(ESCs)to determine when the peak of ETV2 expression occurs.We show that overexpression of ETV2 in differentiating human ESC is able to increase the number of endothelial cells generated when administered during or after the endogenous peak of gene expression.Conclusions:Addition of exogenous ETV2 to human ESCs significantly increased the number of cells expressing angioblast genes without arterial or venous specification.This may be a viable solution to generate in vitro endothelial cells for use in research and in the clinic.展开更多
Most eukaryotes have a self-sustaining circadian clock that senses environmental cues and the internal metabolic state and then imposes daily temporal organization of the physiology.The clock,by nature,regulates the d...Most eukaryotes have a self-sustaining circadian clock that senses environmental cues and the internal metabolic state and then imposes daily temporal organization of the physiology.The clock,by nature,regulates the daily creation and destruction of a large quantity of RNA and proteins,including those at the core of the oscillator itself.Although a transcriptional-translational feedback loop maintains the rhythmicity of the oscillator,various post-translational modifications(PTMs)of clock proteins play fundamental roles in keeping the pace of the circadian clock near 24 h.To maintain circadian clock pacing,PTMs act to ensure the rapid,efficient,and precise activation,inactivation,and finally destruction of core clock proteins(Hirano et al.,2016).展开更多
Drug candidates often fail in preclinical and clinical testing because of reasons of efficacy and/or safety. It would be time- and cost-efficient to have screening models that reduce the rate of such false positive ca...Drug candidates often fail in preclinical and clinical testing because of reasons of efficacy and/or safety. It would be time- and cost-efficient to have screening models that reduce the rate of such false positive candidates that appear promising at first but fail later. In this regard, it would be particularly useful to have a rapid and inexpensive whole animal model that can pre-select hits from high-throughput screens but before testing in costly rodent assays. Drosophila melanogaster has emerged as a potential whole animal model for drug screening. Of particular interest have been drugs that must act in the context of multi-cellularity such as those for neurological disorders and cancer. A recent review provides a comprehensive summary of drug screening in Drosophila, but with an emphasis on neurodegenerative disorders. Here, we review Drosophila screens in the literature aimed at cancer therapeutics.展开更多
Neurons are the basic units of connectivity in the nervous system. As a signature feature, neurons form polarized structures: dendrites and axons, which integrate either sensory stimuli or inputs from upstream neuron...Neurons are the basic units of connectivity in the nervous system. As a signature feature, neurons form polarized structures: dendrites and axons, which integrate either sensory stimuli or inputs from upstream neurons and send outputs to target cells, respectively. The separation of dendritic and axonal compartments is achieved in two steps during development: 1) dendrite and axon specification: how neurites are initially specified as dendrites and axons; and 2) dendrite and axon commitment: how dendrites and axons are committed to distinct compartmental fates and architectures. To understand neural circuit assembly and to correct erroneous dendrite or axon growth in a compartment-specific manner, it is essential to understand the regulatory mechanisms underlying dendrite and axon commitment. Compared to extensive studies on dendrite and axon specification, little is known about the molecular mechanisms exclusively dedicated to dendrite or axon commitment. Recent studies have uncovered the requirement of transcriptional regulation in this process. Here, we review the studies on transcriptional regulators: Darl, p300-SnoN, NeuroD, which have been shown to separate dendrite- and axon-specific growth of the same neuron type after compartmental fates are specified.展开更多
Growth inhibition and cold-acclimation strategies help plants withstand cold stress,which adversely affects growth and survival.PHYTOCHROME B(phyB)regulates plant growth through perceiving both light and ambient tempe...Growth inhibition and cold-acclimation strategies help plants withstand cold stress,which adversely affects growth and survival.PHYTOCHROME B(phyB)regulates plant growth through perceiving both light and ambient temperature signals.However,the mechanism by which phyB mediates the plant response to cold stress remains elusive.Here,we show that the key transcription factors mediating cold acclimation,C-REPEAT BINDING FACTORs(CBFs),interact with PHYTOCHROME-INTERACTING FACTOR 3(PIF3)under cold stress,thus attenuating the mutually assured destruction of PIF3–phyB.Cold-stabilized phyB acts downstream of CBFs to positively regulate freezing tolerance by modulating the expression of stress-responsive and growth-related genes.Consistent with this,phyB mutants exhibited a freezing-sensitive phenotype,whereas phyB-overexpression transgenic plants displayed enhanced freezing tolerance.Further analysis showed that the PIF1,PIF4,and PIF5 proteins,all of which negatively regulate plant freezing tolerance,were destabilized by cold stress in a phytochrome-dependent manner.Collectively,our study reveals that CBFs–PIF3–phyB serves as an important regulatory module for modulating plant response to cold stress.展开更多
文摘The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Rather, dynamic exchange of proteins and membrane is needed to maintain cellular homeostasis. One of the most dramatic examples of membrane mobilization is seen during the process ofmacroautophagy. Macroautophagy is the primary cellular pathway for degradation of long-lived proteins and organelles. In response to environmental cues, such as starvation or other types of stress, the cell produces a unique membrane structure, the phagophore. The phagophore sequesters cytoplasm as it forms a double-membrane cytosolic vesicle, an autophagosome. Upon completion, the autophagosome fuses with a lysosome or a vacuole in yeast, which delivers hydrolases that break down the inner autophagosome membrane along with its cargo, and the resulting macromolecules are released back into the cytosol for reuse. Autophagy is therefore a recycling process, allowing cells to survive periods of nutrient limitation; however, it has a wider physiological role, participating in development and aging, and also in protection against pathogen invasion, cancer and certain neurodegenerative diseases. In many cases, the role ofautophagy is identified through studies of an autophagy-related protein, Atg6/Beclin 1. This protein is part of a lipid kinase complex, and recent studies suggest that it plays a central role in coordinating the cytoprotective function ofautophagy and in opposing the cellular death process of apoptosis. Here, we summarize our current knowledge ofAtg6/Beclin 1 in different model organisms and its unique function in the cell.
基金This work was supported by the Municipal Natural Science Foundation of Beijing(7162122).
文摘Objective:Transdermal drug delivery systems represent a critical focus in the pharmaceutics field;however,their use is limited by the fact that many drugs usually pass through the skin with low permeability.Menthol is a common penetration enhancer because of its high penetration-enhancing efficiency and safety.Our research aimed to reveal the penetrationenhancing mechanisms of menthol via a multiscale study.Methods:First,the interaction of menthol with the stratum corneum was studied using vertical Franz diffusion cells obtained from the abdominal skin of rats as a model.Then,the skin samples were observed via transmission electron microscopy.Finally,the interaction of different concentrations of menthol with a mixed lipid model of the stratum corneum was investigated via molecular dynamics simulation using the GROMOS 54A7 force field on a microcosmic level.Results:At concentrations of 3.5%or lower,menthol changed the original structure of the stratum corneum to varying degrees,which increased its fluidity and facilitated the permeation and storage of menthol.Menthol increased the fluidity of the stratum corneum mainly via two mechanisms.First,menthol had strong hydrogen-bonding capability,and it could compete for the lipidelipid hydrogen bonding sites,thereby weakening the stability of the hydrogenbonding network connecting the skin lipids.In addition,menthol had strong affinity for cholesterol,probably due to their similar molecular structures,suggesting that the incorporation of menthol would increase the fluidity of the lipid membrane similarly to cholesterol.Conclusion:The penetration-enhancing mechanism of menthol was explained using in vitro and molecular dynamics simulation methods.These findings may advance the basic research of transdermal drug delivery systems and facilitate the discoveries of novel penetration enhancers.
文摘Identification of biological markers of cancer is a major area of research. Biomarkers could identify the presence of a tumor before it could otherwise be easily detected, and the ability to detect cancers at early stages is a key factor in increasing survivability. For example, the American Cancer Society finds that a reason breast cancer survival rates are so high is that there are good methods for early detection of tumors. However, this is not the case for most cancers. For lung cancer, the five-year survival is 15%, but for the 16% of lung cancer cases diagnosed at early stages,
基金grants from the National Natural Science Foundation of China(31922005)the Natural Science Foundation of Zhejiang Province(LR18C020001)+1 种基金the Young Elite Scientist Sponsorship Program of China Association for Science and Technology(CAST)(2018QNRC001)111 Project(B14027)to J.X.
文摘The mitotic activity of root apical meristem(RAM)is critical to primary root growth and development.Previous studies have identified the roles of ROOT GROWTH FACTOR 1(RGF1),a peptide ligand,and its receptors,RGF1 INSENSITIVEs(RGIs),a clade of five leucine-rich-repeat receptor-like kinases,in promoting cell division in the RAM,which determines the primary root length.However,the downstream signaling components remain elusive.In this study,we identify a complete mitogen-activated protein kinase(MAPK or MPK)cascade,composed of YDA,MKK4/MKK5,and MPK3/MPK6,that functions downstream of the RGF1-RGI ligand-receptor pair.Similar to the rgi1/2/3/4/5 quintuple mutant,loss-of-function mutants of MPK3 and MPK6,MKK4 and MKK5,or YDA show a short-root phenotype,which is associated with reduced mitotic activity and lower expression of PLETHORA 1(PLT1)/PLT2 in the RAM.Furthermore,MPK3/MPK6 activation in response to exogenous RGF1 treatment is impaired in the rgi1/2/3/4/5 quintuple,yda single,and mkk4 m kk5 double mutants.Epistatic analyses demonstrated that the expression of constitutively active MKK4,MKK5,or YDA driven by the RGI2 promoter can rescue the short-root phenotype of the rgi1/2/3/4/5 mutant.Taken together,these results suggest that the YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the RGF1-RGI ligand-receptor pair and upstream of PLT1/PLT2 to modulate the stem cell population and primary root growth in Arabidopsis.
文摘The rice pattern recognition receptor (PRR) XA21 confers race-specific resistance in leaf infection by bacterial blight Xathornonas oryzae pv. oryzae (Xoo), and was shown to be primarily localized to the endoplasmic reticulum (ER) when expressed with its native promoter or overexpressed in the protoplast. However, whether the protein is still ER- localization in the intact cell when overexpressed remains to be identified. Here, we showed that XA21, its kinase-dead mutant XA21PK736EP and the triple autophosphorylation mutant XA21PS686AJT688AJS699A GFP fusions were primarily localized to the plasma membrane (PM) when overexpressed in the intact transgenic rice cell, and also localized to the ER in the transgenic protoplast. The transgenic plants constitutively expressing the wild-type XA21 or its GFP fusion displayed racespecific resistance to Xoo at the adult and seedling stages. XA21 and XA21PK736EP could be internalized probably via the SCAMP-positive early endosomal compartment in the protoplast, suggesting that XA21 might be endocytosed to initiate resistance responses during pathogen infection. We also established a root infection system and demonstrated that XA21 also mediated race-specific resistance responses to Xoo in the root. Our current study provides an insight into the nature of the XA21-mediated resistance and a practical approach using the root cell system to further dissect the cellular signaling of the PRR during the rice-Xoo interaction.
基金grants from the National Basic Research Program of China (973 Program),the National Natural Science Foundation of China,in part by the Peking-Tsinghua Center for Life Sciences and a grant from the Next-Generation BioGreen 21 Program,Rural Development Administration,Republic of Korea
文摘ABSTRACT Recent advances in genome-wide techniques allowed the identification of thousands of non-coding RNAs with various sizes in eukaryotes, some of which have further been shown to serve important functions in many biologi- cal processes. However, in model plant Arabidopsis, novel intermediate-sized ncRNAs (im-ncRNAs) (50-300 nt) have very limited information. By using a modified isolation strategy combined with deep-sequencing technology, we identified 838 im-ncRNAs in Arabidopsis globally. More than half (58%) are new ncRNA species, mostly evolutionary divergent. Interestingly, annotated protein-coding genes with 5'-UTR-derived novel im-ncRNAs tend to be highly expressed. For intergenic im-ncRNAs, their average abundances were comparable to mRNAs in seedlings, but subsets exhibited signifi- cantly lower expression in senescing leaves. Further, intergenic im-ncRNAs were regulated by similar genetic and epige- netic mechanisms to those of protein-coding genes, and some showed developmentally regulated expression patterns. Large-scale reverse genetic screening showed that the down-regulation of a number of im-ncRNAs resulted in either obvious molecular changes or abnormal developmental phenotypes in vivo, indicating the functional importance of im-ncRNAs in plant growth and development. Together, our results demonstrate that novel Arabidopsis im-ncRNAs are developmentally regulated and functional components discovered in the transcriptome.
文摘The function of lymphocytes is dependent on their plasticity,particularly their adaptation to energy availability and environmental stress,and their protein synthesis machinery.Lymphocytes are constantly under metabolic stress,and macroautophagy/autophagy is the primary metabolic pathway that helps cells overcome stressors.The intrinsic role of autophagy in regulating the metabolism of adaptive immune cells has recently gained increasing attention.In this review,we summarize and discuss the versatile roles of autophagy in regulating cellular metabolism and the implications of autophagy for immune cell function and fate,especially for T and B lymphocytes.
基金supported by research grants from the National Institutes of Health(GM61812)to NWthe Human Frontier Long Term Fellowship(LT0084/1998-M)to TTa collaborative grant from The Kyoto University Foundation(2007-2008)to NW,SM,and TT.
文摘CSN1 is a component of the COP9 signalosome(CSN),a conserved protein complex with pleiotropic functions in many organs and cell types.CSN regulates ubiquitinproteasome dependent protein degradation via the deneddylation and the associated deubiquitination activities.In addition,CSN associates with protein kinases and modulates cell signaling,particularly the activator protein 1(AP-1)pathway.We have shown previously that CSN1 suppresses AP-1 transcription activity and inhibits ultraviolet(UV)and serum activation of c-fos expression.Here we show that CSN1 can inhibit phosphorylation of proto-oncogene c-Jun product and repress c-Jun dependent transcription.Further,CSN1 dramatically downregulates ectopic expression of c-Jun N-terminal kinase 1(JNK1)in cultured cells.The decline in JNK1 is not caused by excessive proteolysis or by 3′UTR-dependent mRNA instability,but by CSN1-dependent repression of one or multiple steps in transcriptional and posttranscriptional mechanisms.Thus,in contrast to CSN5/Jab1,which promotes AP-1 activity,CSN1 displays a negative effect on the AP-1 pathway.Finally,we discuss about the dynamic equilibrium of the CSN complexes in regulation of the AP-1 pathway.
文摘Wolfram syndrome (WFS; MIM 222300) is an autosomal recessive disorder with highly variable clinical manifestations. It is characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness (thus, known as DIDMOAD syndrome) [ 1 ]. Other neurological and endocrine manifestations include dementia, psychiatric illnesses, renal-tract abnormalities, and bladder atony [2]. Gene linkage and positional cloning analysis reveal that a subset of Wolfram syndrome patients belonging to the WFS 1 group (MIM 606201) carry a loss-of-function mutation in the WFS1 gene, which encodes a transmembrane protein, Wolframin, localizing in the endoplasmic reticulm (ER) [3, 4]. Wolframin is thought to be involved in the regulation of ER stress and calcium ho- meostasis, and Wolframin deficiency in mice leads to progressive loss of β cells and impaired glucose tolerance, which is presumably caused by increased ER stress and apoptosis in the β cells.
文摘Heterosis, or hybrid vigor, refers to the phenomenon in which hybrid progeny of two inbred varieties exhibits enhanced growth or agronomic performance. Although a century-long history of research has generated several hypotheses regarding the genetic basis of heterosis, the molecular mechanisms underlying heterosis and heterotic gene expression remain elusive. Here, we report a genome-wide gene expression analysis of two heterotic crosses in rice, taking advantage of its fully sequenced genomes. Approximately 7-9% of the genes were differentially expressed in the seedling shoots from two sets of heterotic crosses, including many transcription factor genes, and exhibited multiple modes of gene action. Comparison of the putative promoter regions of the ortholog genes between inbred parents revealed extensive sequence variation, particularly small insertions/deletions (INDELs), many of which result in the formation/disruption of putative cis-regulatory elements. Together, these results suggest that a combinatorial interplay between expression of transcription factors and polymorphic promoter cis-regulatory elements in the hybrids is one plausible molecular mechanism underlying heterotic gene action and thus heterosis in rice.
基金We thank William Terzaghi for reading and commenting on this manuscript. This work was supported by the Chinese National Natural Science Foundation and in part by The National Science Foundation 2010 Program (US) and by the National Institutes of Health grant number GM069418 to SLH.
文摘We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and proteinprotein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale.
基金supported by special funds from the Ministry of Science and Technology of China and Beijing Commission of Science and Technology
文摘Heterosis,or hybrid vigor,is the phenomenon whereby progeny of two inbred lines exhibit superior agronomic performance compared with either parent.We analyzed the expression of miRNAs and highly expressed small RNAs (defined according to Solexa sequencing results) in two rice (Oryza sativa) subspecies (japonica cv.Nipponbare and indica cv.93-11) and their reciprocal hybrids using microarrays.We found that of all the 1141 small RNAs tested,140 (12%,140 of 1141) and 157 (13%,157 of 1141) were identified being significantly differentially expressed in two reciprocal hybrids,respectively.All possible modes of action,including additive,high-and low-parent,above high-and below low-parent modes were exhibited.Both F1 hybrids showed non-additive expression patterns,with downregulation predominating.Interestingly,15 miRNAs displayed stark opposite expression trends relative to midparent in reciprocal hybrids.Computational prediction of targets of differentially expressed miRNAs showed that they participated in multifaceted developmental pathways,and were not distinguishable from the targets of non-differentially expressed miRNAs.Together,our findings reveal that small RNAs play roles in heterosis and add a new layer in the understanding and exploitation of molecular mechanisms of heterosis.
基金the NSF (MCB-1615387)a Yale University Brown Fellowship for funding
文摘Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components,implicating pectins in new molecular functions. Pectins are often localized in spatially-restricted patterns, and some of these non-uniform pectin distributions contribute to multiple aspects of plant development, including the morphogenesis of cells and organs. Furthermore, a growing number of mutants affecting cell wall composi- tion have begun to reveal the distinct contributions of different pectins to plant development. This review discusses the interactions of pectins with other cell wall components, the functions of pectins in controlling cellular morphology, and how non-uniform pectin composition can be an important determinant of developmental processes.
基金The UCLA vector core is supported by JCCC/P30 CA016042 and CURE/P30 DK041301The cells were supplied through the UCLA BSCRC stem cell core laboratoryThis work was supported by funds from the California Institute for Regenerative Medicine(CIRM RB3-02165).
文摘Background:Endothelial cells line the luminal surface of blood vessels and form a barrier between the blood and other tissues of the body.Ets variant 2(ETV2)is transiently expressed in both zebrafish and mice and is necessary and sufficient for vascular endothelial cell specification.Overexpression of this gene in early zebrafish and mouse embryos results in ectopic appearance of endothelial cells.Ectopic expression of ETV2 in later development results in only a subset of cells responding to the signal.Findings:We have examined the expression pattern of ETV2 in differentiating human embryonic stem cells(ESCs)to determine when the peak of ETV2 expression occurs.We show that overexpression of ETV2 in differentiating human ESC is able to increase the number of endothelial cells generated when administered during or after the endogenous peak of gene expression.Conclusions:Addition of exogenous ETV2 to human ESCs significantly increased the number of cells expressing angioblast genes without arterial or venous specification.This may be a viable solution to generate in vitro endothelial cells for use in research and in the clinic.
基金supported by the Forest B.H.and Elizabeth D.W.Brown Fund,National Science Foundation(EAGER#1548538 and IOS#1856452)National Institutes of Health(R35 GM128670).
文摘Most eukaryotes have a self-sustaining circadian clock that senses environmental cues and the internal metabolic state and then imposes daily temporal organization of the physiology.The clock,by nature,regulates the daily creation and destruction of a large quantity of RNA and proteins,including those at the core of the oscillator itself.Although a transcriptional-translational feedback loop maintains the rhythmicity of the oscillator,various post-translational modifications(PTMs)of clock proteins play fundamental roles in keeping the pace of the circadian clock near 24 h.To maintain circadian clock pacing,PTMs act to ensure the rapid,efficient,and precise activation,inactivation,and finally destruction of core clock proteins(Hirano et al.,2016).
基金Work in the Su lab was supported by the grants from the National Institutes of Health(Nos.R21 DE017494 and RO1 GM087276)the Department of Defense US Army CDMRP(No.TS093045) to T.T.Su
文摘Drug candidates often fail in preclinical and clinical testing because of reasons of efficacy and/or safety. It would be time- and cost-efficient to have screening models that reduce the rate of such false positive candidates that appear promising at first but fail later. In this regard, it would be particularly useful to have a rapid and inexpensive whole animal model that can pre-select hits from high-throughput screens but before testing in costly rodent assays. Drosophila melanogaster has emerged as a potential whole animal model for drug screening. Of particular interest have been drugs that must act in the context of multi-cellularity such as those for neurological disorders and cancer. A recent review provides a comprehensive summary of drug screening in Drosophila, but with an emphasis on neurodegenerative disorders. Here, we review Drosophila screens in the literature aimed at cancer therapeutics.
文摘Neurons are the basic units of connectivity in the nervous system. As a signature feature, neurons form polarized structures: dendrites and axons, which integrate either sensory stimuli or inputs from upstream neurons and send outputs to target cells, respectively. The separation of dendritic and axonal compartments is achieved in two steps during development: 1) dendrite and axon specification: how neurites are initially specified as dendrites and axons; and 2) dendrite and axon commitment: how dendrites and axons are committed to distinct compartmental fates and architectures. To understand neural circuit assembly and to correct erroneous dendrite or axon growth in a compartment-specific manner, it is essential to understand the regulatory mechanisms underlying dendrite and axon commitment. Compared to extensive studies on dendrite and axon specification, little is known about the molecular mechanisms exclusively dedicated to dendrite or axon commitment. Recent studies have uncovered the requirement of transcriptional regulation in this process. Here, we review the studies on transcriptional regulators: Darl, p300-SnoN, NeuroD, which have been shown to separate dendrite- and axon-specific growth of the same neuron type after compartmental fates are specified.
基金This work was supported by grants from the Ministry of Agriculture of China,China(2016ZX08009003-002)the National Natural Science Foundation of China,China(31872658,31921001)Discipline Program of Beijing Outstanding University,China.
文摘Growth inhibition and cold-acclimation strategies help plants withstand cold stress,which adversely affects growth and survival.PHYTOCHROME B(phyB)regulates plant growth through perceiving both light and ambient temperature signals.However,the mechanism by which phyB mediates the plant response to cold stress remains elusive.Here,we show that the key transcription factors mediating cold acclimation,C-REPEAT BINDING FACTORs(CBFs),interact with PHYTOCHROME-INTERACTING FACTOR 3(PIF3)under cold stress,thus attenuating the mutually assured destruction of PIF3–phyB.Cold-stabilized phyB acts downstream of CBFs to positively regulate freezing tolerance by modulating the expression of stress-responsive and growth-related genes.Consistent with this,phyB mutants exhibited a freezing-sensitive phenotype,whereas phyB-overexpression transgenic plants displayed enhanced freezing tolerance.Further analysis showed that the PIF1,PIF4,and PIF5 proteins,all of which negatively regulate plant freezing tolerance,were destabilized by cold stress in a phytochrome-dependent manner.Collectively,our study reveals that CBFs–PIF3–phyB serves as an important regulatory module for modulating plant response to cold stress.