Human induced pluripotent stem cells(hiPS cells or hiPSCs) can be derived from cells of patients with severe muscle disease. If skeletal muscle induced from patientiPSCs shows disease-specific phenotypes, it can be us...Human induced pluripotent stem cells(hiPS cells or hiPSCs) can be derived from cells of patients with severe muscle disease. If skeletal muscle induced from patientiPSCs shows disease-specific phenotypes, it can be useful for studying the disease pathogenesis and for drug development. On the other hand, human iPSCs from healthy donors or hereditary muscle diseaseiPSCs whose genomes are edited to express normal protein are expected to be a cell source for cell therapy. Several protocols for the derivation of skeletal muscle from human iPSCs have been reported to allow the development of efficient treatments for devastating muscle diseases. In 2017, the focus of research is shifting to another stage:(1) the establishment of mature myofibers that are suitable for study of the pathogenesis of muscle disease;(2) setting up a highthroughput drug screening system; and(3) the preparation of highly regenerative, non-oncogenic cells in large quantities for cell transplantation, etc.展开更多
基金Supported by The Program for Intractable Diseases Research utilizing Disease-specific iPS cells(Japan Agency for Medical Research and Development:AMED),No.15652069Projects for Technological Development(K1),from the Research Center Network for Realization of Regenerative Medicine(AMED),Intramural Research Grants for Neurological and Psychiatric Disorders of NCNP,No.27-7+1 种基金Grant-in-Aid for Scientific Research(C)(Japan Society for the Promotion of Science)No.16744921
文摘Human induced pluripotent stem cells(hiPS cells or hiPSCs) can be derived from cells of patients with severe muscle disease. If skeletal muscle induced from patientiPSCs shows disease-specific phenotypes, it can be useful for studying the disease pathogenesis and for drug development. On the other hand, human iPSCs from healthy donors or hereditary muscle diseaseiPSCs whose genomes are edited to express normal protein are expected to be a cell source for cell therapy. Several protocols for the derivation of skeletal muscle from human iPSCs have been reported to allow the development of efficient treatments for devastating muscle diseases. In 2017, the focus of research is shifting to another stage:(1) the establishment of mature myofibers that are suitable for study of the pathogenesis of muscle disease;(2) setting up a highthroughput drug screening system; and(3) the preparation of highly regenerative, non-oncogenic cells in large quantities for cell transplantation, etc.