期刊文献+
共找到3,682篇文章
< 1 2 185 >
每页显示 20 50 100
Current Epidemiology of Intracranial Metastases in Two University Teaching Reference Hospitals of the Town of Yaounde, Cameroon: Analysis of 35 Cases Recorded in the Neurosurgery Departments
1
作者 Nassourou Oumarou Haman Ronaldo Fonju Anu +4 位作者 Orlane Ndome Toto Bello Figuim Indira Baboke Marguerite Gwladys Nzedzou Vincent de Paul Djientcheu 《Open Journal of Modern Neurosurgery》 2024年第2期124-136,共13页
Background: The incidence of intracranial metastases (ICMET) has been steadily rising, and its frequency with respect to primary brain tumours is relatively high. Objective: The objectives of this study were to elucid... Background: The incidence of intracranial metastases (ICMET) has been steadily rising, and its frequency with respect to primary brain tumours is relatively high. Objective: The objectives of this study were to elucidate the current epidemiology and describe the clinical, diagnostic and therapeutic features of ICMET in Yaounde. Method and findings: A descriptive cross-sectional study was done in the neurosurgery departments of the General and Central Hospitals of Yaounde during the period from January 2016 to December 2022. We included all medical booklets of patients admitted for a tumoral intracranial expansive process with our target population being patients with histological evidence of ICMET, and did a retrospective inclusion of data using a pre-established technical form aimed at collecting sociodemographic data, clinical data, paraclinical data, and the treatment procedures. Analysis was done using the SPSS statistical software. A total of 614 cases of intracranial tumors were included among whom 35 presented histological evidence of ICMET. This gives a frequency of 5.7%. The sex ratio was 0.94, the mean age was 55.68 +/- 14.4 years, extremes 28 and 86 years and the age range 50 - 59 was affected in 28.57% of cases. The clinical presentation included signs of raised intracranial pressure (headache, blurred vision, vomiting) in 26 cases (74.3%), motor deficit 48.6%, seizures 17.1%. The mode of onset was metachronous in 71.4% and synchronous in 28.6%. The imaging techniques were cerebral CT scan in 82.9%, cerebral MRI in 40%, TAP scan in 22.9%. The metastatic lesions were supratentorial in 94.3% and single in 62.9%. The primary cancers found were breast cancer (31.4%), lung cancer (25.7%), prostate cancer (17.1%), thyroid cancer (5.7%), colon cancer (2.9%), and melanoma (2.9%). The therapeutic modalities were total resection (68.6%), radiotherapy (37.1%). Conclusion: Intracranial metastases are relatively frequent. There is a female sex predominance and the age group 50 - 59 years is the most affected. Brain metastases mostly occur in patients with a history of known primary tumor. The clinical signs mainly include signs of raised intracranial pressure, motor deficit, seizures and mental confusion. Cerebral CT Scan is the main imaging technique used. Most of the lesions are single and supratentorially located. The primary cancers most represented include breast cancer, lung cancer and prostate cancer. Surgery is the main treatment procedure. The adjuvant treatment (radiotherapy, chemotherapy) was limited. 展开更多
关键词 Intracranial Metastases EPIDEMIOLOGY Yaounde
下载PDF
Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage 被引量:1
2
作者 Jiatong Zhang Qi Zhu +4 位作者 Jie Wang Zheng Peng Zong Zhuang Chunhua Hang Wei Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期825-832,共8页
The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct facto... The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct factors such as ischemia,hypoxia,excitotoxicity,and toxicity of free hemoglobin and its degradation products,which trigger mitochondrial dysfunction.Dysfunctional mitochondria release large amounts of reactive oxygen species,inflammatory mediators,and apoptotic proteins that activate apoptotic pathways,further damaging cells.In response to this array of damage,cells have adopted multiple mitochondrial quality control mechanisms through evolution,including mitochondrial protein quality control,mitochondrial dynamics,mitophagy,mitochondrial biogenesis,and intercellular mitochondrial transfer,to maintain mitochondrial homeostasis under pathological conditions.Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage.This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage,particularly mitochondrial quality control mechanisms.It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage. 展开更多
关键词 mitochondrial biogenesis mitochondrial dynamics mitochondrial dysfunction mitochondrial fission and fusion mitochondrial quality control MITOPHAGY subarachnoid hemorrhage
下载PDF
Long non-coding RNA H19 regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury 被引量:1
3
作者 Mou Gao Qin Dong +4 位作者 Zhijun Yang Dan Zou Yajuan Han Zhanfeng Chen Ruxiang Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期872-880,共9页
Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regen... Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement.However,the neural regeneration efficiency of induced neural stem cells remains limited.In this study,we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells.We found that H19 was the most downregulated neurogenesis-associated lnc RNA in induced neural stem cells compared with induced pluripotent stem cells.Additionally,we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons.We predicted the target genes of H19 and discovered that H19 directly interacts with mi R-325-3p,which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells.Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation,and mi R-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition.Furthermore,H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells.Notably,silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice.Our results reveal that H19 regulates the neurogenesis of induced neural stem cells.H19 inhibition may promote the neural differentiation of induced neural stem cells,which is closely associated with neurological recovery following closed head injury. 展开更多
关键词 closed head injury Ctbp2 induced neural stem cell lncRNA H19 miR-325-3p NEUROGENESIS
下载PDF
Sustained release of vascular endothelial growth factor A and basic fibroblast growth factor from nanofiber membranes reduces oxygen/glucose deprivation-induced injury to neurovascular units 被引量:1
4
作者 Yifang Wu Jun Sun +2 位作者 Qi Lin Dapeng Wang Jian Hai 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期887-894,共8页
Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell... Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell proliferation and differentiation,thereby exerting neuroprotective effects.However,the beneficial effects of endogenous VEGFA/b FGF are limited as their expression is only transiently increased.In this study,we generated multilayered nanofiber membranes loaded with VEGFA/b FGF using layer-by-layer self-assembly and electrospinning techniques.We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month.This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation,inhibited neuronal apoptosis,upregulated the expression of tight junction proteins,and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation.Furthermore,this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3(JAK2/STAT3),Bax/Bcl-2,and cleaved caspase-3.Therefore,this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway. 展开更多
关键词 brain ischemia brain microvascular endothelial cell nanofiber membrane neurovascular unit
下载PDF
The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury 被引量:1
5
作者 Yijing Zhao Tong Li +6 位作者 Zige Jiang Chengcheng Gai Shuwen Yu Danqing Xin Tingting Li Dexiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1084-1091,共8页
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r... We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury. 展开更多
关键词 chemokine(C-X-C motif)ligand 11 cystathionineβsynthase H2S hypoxic ischemic brain injury inflammation L-CYSTEINE lipopolysaccharide microglia miR-9-5p neuroprotection
下载PDF
Preliminary Recommendations for Surgical Practice of Neurosurgery Department in the Central Epidemic Area of 2019 Coronavirus Infection 被引量:2
6
作者 Yu-tang TAN Jun-wen WANG +5 位作者 Kai ZHAO Lin HAN Hua-qiu ZHANG Hong-quan NIU Kai SHU Ting LEI 《Current Medical Science》 SCIE CAS 2020年第2期281-284,共4页
Since December 2019,an outbreak of coronavirus disease 2019(COVID-19)has.posed significant threats to the public health and life in China.Unlike the other 6 identified coronaviruscs,the SARS-Cov-2 has a high infectiou... Since December 2019,an outbreak of coronavirus disease 2019(COVID-19)has.posed significant threats to the public health and life in China.Unlike the other 6 identified coronaviruscs,the SARS-Cov-2 has a high infectious rate,a long incubation period and a variety of manifestations.In the absence of effective treatments for the virus,it becomes extremely urgent to develop scientific and standardized proposals for prevention and control of virus transmission.Hereby we focused on the surgical practice in Neurosurgery Department,Tongji Hospital,Wuhan,and drafted several recommendations based on the latest relevant guidelines and our experience.These recommendations have helped us until now to achieve'zero infection'of doctors and nurses in our department,we would like to share them with other medical staff of neurosurgery to fight 2019-nCoV infection. 展开更多
关键词 SARS-CoV-2 NEUROSURGERY Diagnosis Treatment Prevention
下载PDF
Are EPB41 and alpha-synuclein diagnostic biomarkers of sport-related concussion?Findings from the NCAA and Department of Defense CARE Consortium
7
作者 Rany Vorn Christina Devoto +22 位作者 Timothy B.Meier Chen Lai Sijung Yun Steven P.Broglio Sara Mithani Thomas W.McAllister Christopher C.Giza Hyung-Suk Kim Daniel Huber Jaroslaw Harezlak Kenneth L.Cameron Gerald McGinty Jonathan Jackson Kevin M.Guskiewicz Jason P.Mihalik Alison Brooks Stefan Duma Steven Rowson Lindsay D.Nelson Paul Pasquina Michael A.McCrea Jessica M.Gill the CARE Consortium Investigators 《Journal of Sport and Health Science》 SCIE CSCD 2023年第3期379-387,共9页
Background:Current protein biomarkers are only moderately predictive at identifying individuals with mild traumatic brain injury or concussion.Therefore,more accurate diagnostic markers are needed for sport-related co... Background:Current protein biomarkers are only moderately predictive at identifying individuals with mild traumatic brain injury or concussion.Therefore,more accurate diagnostic markers are needed for sport-related concussion.Methods:This was a multicenter,prospective,case-control study of athletes who provided blood samples and were diagnosed with a concussion or were a matched non-concussed control within the National Collegiate Athletic Association-Department of Defense Concussion Assessment,Research,and Education Consortium conducted between 2015 and 2019.The blood was collected within 48 h of injury to identify protein abnormalities at the acute and subacute timepoints.Athletes with concussion were divided into 6 h post-injury(0-6 h post-injury)and after 6 h postinjury(7-48 h post-injury)groups.We applied a highly multiplexed proteomic technique that used a DNA aptamers assay to target 1305proteins in plasma samples from athletes with and without sport-related concussion.Results:A total of 140 athletes with concussion(79.3%males;aged 18.71±1.10 years,mean±SD)and 21 non-concussed athletes(76.2%males;19.14±1.10 years)were included in this study.We identified 338 plasma proteins that significantly differed in abundance(319 upregulated and 19 downregulated)in concussed athletes compared to non-concussed athletes.The top 20 most differentially abundant proteins discriminated concussed athletes from non-concussed athletes with an area under the curve(AUC)of 0.954(95%confidence interval:0.922-0.986).Specifically,after 6 h of injury,the individual AUC of plasma erythrocyte membrane protein band 4.1(EPB41)and alpha-synuclein(SNCA)were 0.956 and 0.875,respectively.The combination of EPB41 and SNCA provided the best AUC(1.000),which suggests this combination of candidate plasma biomarkers is the best for diagnosing concussion in athletes after 6 h of injury.Conclusion:Our data suggest that proteomic profiling may provide novel diagnostic protein markers and that a combination of EPB41 and SNCA is the most predictive biomarker of concussion after 6 h of injury. 展开更多
关键词 Biomarkers College athletes CONCUSSION Mild traumatic brain injury Sport injury
下载PDF
Transcriptomic and bioinformatics analysis of the mechanism by which erythropoietin promotes recovery from traumatic brain injury in mice
8
作者 Weilin Tan Jun Ma +9 位作者 Jiayuanyuan Fu Biying Wu Ziyu Zhu Xuekang Huang Mengran Du Chenrui Wu Ehab Balawi Qiang Zhou Jie Zhang Zhengbu Liao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期171-179,共9页
Recent studies have found that erythropoietin promotes the recovery of neurological function after traumatic brain injury.However,the precise mechanism of action remains unclea r.In this study,we induced moderate trau... Recent studies have found that erythropoietin promotes the recovery of neurological function after traumatic brain injury.However,the precise mechanism of action remains unclea r.In this study,we induced moderate traumatic brain injury in mice by intrape ritoneal injection of erythro poietin for 3 consecutive days.RNA sequencing detected a total of 4065 differentially expressed RNAs,including 1059 mRNAs,92 microRNAs,799 long non-coding RNAs,and 2115circular RNAs.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses revealed that the coding and non-coding RNAs that were differentially expressed after traumatic brain injury and treatment with erythropoietin play roles in the axon guidance pathway,Wnt pathway,and MAPK pathway.Constructing competing endogenous RNA networks showed that regulatory relationship between the differentially expressed non-coding RNAs and mRNAs.Because the axon guidance pathway was repeatedly enriched,the expression of Wnt5a and Ephb6,key factors in the axonal guidance pathway,was assessed.Ephb6 expression decreased and Wnt5a expression increased after traumatic brain injury,and these effects were reversed by treatment with erythro poietin.These findings suggest that erythro poietin can promote recove ry of nerve function after traumatic brain injury through the axon guidance pathway. 展开更多
关键词 axon guidance bioinformatics analysis competing endogenous RNA ERYTHROPOIETIN Gene Ontology Kyoto Encyclopedia of Genes and Genomes non-coding RNA RNA sequencing TRANSCRIPTOMICS traumatic brain injury
下载PDF
Growth hormone promotes the reconstruction of injured axons in the hypothalamo-neurohypophyseal system
9
作者 Kai Li Zhanpeng Feng +11 位作者 Zhiwei Xiong Jun Pan Mingfeng Zhou Weizhao Li Yichao Ou Guangsen Wu Mengjie Che Haodong Gong Junjie Peng Xingqin Wang Songtao Qi Junxiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2249-2258,共10页
Previous studies have shown that growth hormone can regulate hypothalamic energy metabolism, stress, and hormone release. Therefore, growth hormone has great potential for treating hypothalamic injury. In this study, ... Previous studies have shown that growth hormone can regulate hypothalamic energy metabolism, stress, and hormone release. Therefore, growth hormone has great potential for treating hypothalamic injury. In this study, we established a specific hypothalamic axon injury model by inducing hypothalamic pituitary stalk electric lesions in male mice. We then treated mice by intraperitoneal administration of growth hormone. Our results showed that growth hormone increased the expression of insulin-like growth factor 1 and its receptors, and promoted the survival of hypothalamic neurons, axonal regeneration, and vascular reconstruction from the median eminence through the posterior pituitary. Altogether, this alleviated hypothalamic injury-caused central diabetes insipidus and anxiety. These results suggest that growth hormone can promote axonal reconstruction after hypothalamic injury by regulating the growth hormone-insulin-like growth factor 1 axis. 展开更多
关键词 arginine vasopressin growth hormone hypothalamo-neurohypophyseal system HYPOTHALAMUS injury insulin-like growth factor 1 OXYTOCIN REGENERATION
下载PDF
Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization
10
作者 Zeyan Liang Zhelun Yang +5 位作者 Haishu Xie Jian Rao Xiongjie Xu Yike Lin Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2259-2269,共11页
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)... Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells hypoxia preconditioning interleukin-1 receptor-associated kinase 1 MACROPHAGES mesenchymal stem cells small extracellular vesicles spinal cord injury
下载PDF
Gabapentinoids for the treatment of stroke
11
作者 Ying Zhang Chenyu Zhang +3 位作者 Xiaoli Yi Qi Wang Tiejun Zhang Yuwen Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1509-1516,共8页
Gabapentinoid drugs(pregabalin and gabapentin) have been successfully used in the treatment of neuro pathic pain and in focal seizure prevention.Recent research has demonstrated their potent activities in modulating n... Gabapentinoid drugs(pregabalin and gabapentin) have been successfully used in the treatment of neuro pathic pain and in focal seizure prevention.Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue,oxidative stress,and inflammation,which matches the mechanism of action via voltage-gated calcium channels.In this review,we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids.We systematically summarize the preclinical and clinical research on gabapentinoids in stroke,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,seizures after stro ke,cortical spreading depolarization after stroke,pain after stroke,and nerve regeneration after stro ke.This review also discusses the potential to rgets of gabapentinoids in stroke;however,the existing results are still unce rtain regarding the effect of gabapentinoids on stroke and related diseases.Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke.Therefore,gabapentinoids have both opportunities and challenges in the treatment of stroke. 展开更多
关键词 cortical spreading depolarization gabapentinoid intracerebral hemorrhage pain after stroke STROKE subarachnoid hemorrhage
下载PDF
Transforming growth factor-beta 1 enhances discharge activity of cortical neurons
12
作者 Zhihui Ren Tian Li +5 位作者 Xueer Liu Zelin Zhang Xiaoxuan Chen Weiqiang Chen Kangsheng Li Jiangtao Sheng 《Neural Regeneration Research》 SCIE CAS 2025年第2期548-556,共9页
Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de... Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system. 展开更多
关键词 central nervous system cortical neurons ERK firing properties JNK Nav1.3 p38 transforming growth factor-beta 1 traumatic brain injury voltage-gated sodium currents
下载PDF
Metformin alleviates spinal cord injury by inhibiting nerve cell ferroptosis through upregulation of heme oxygenase-1 expression
13
作者 Zhihua Wang Wu Zhou +2 位作者 Zhixiong Zhang Lulu Zhang Meihua Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2041-2049,共9页
Previous studies have reported upregulation of heme oxygenase-1 in different central nervous system injury models.Heme oxygenase-1 plays a critical anti-inflammatory role and is essential for regulating cellular redox... Previous studies have reported upregulation of heme oxygenase-1 in different central nervous system injury models.Heme oxygenase-1 plays a critical anti-inflammatory role and is essential for regulating cellular redox homeostasis.Metformin is a classic drug used to treat type 2 diabetes that can inhibit ferroptosis.Previous studies have shown that,when used to treat cardiovascular and digestive system diseases,metformin can also upregulate heme oxygenase-1 expression.Therefore,we hypothesized that heme oxygenase-1 plays a significant role in mediating the beneficial effects of metformin on neuronal ferroptosis after spinal cord injury.To test this,we first performed a bioinformatics analysis based on the GEO database and found that heme oxygenase-1 was upregulated in the lesion of rats with spinal cord injury.Next,we confirmed this finding in a rat model of T9 spinal cord compression injury that exhibited spinal cord nerve cell ferroptosis.Continuous intraperitoneal injection of metformin for 14 days was found to both upregulate heme oxygenase-1 expression and reduce neuronal ferroptosis in rats with spinal cord injury.Subsequently,we used a lentivirus vector to knock down heme oxygenase-1 expression in the spinal cord,and found that this significantly reduced the effect of metformin on ferroptosis after spinal cord injury.Taken together,these findings suggest that metformin inhibits neuronal ferroptosis after spinal cord injury,and that this effect is partially dependent on upregulation of heme oxygenase-1. 展开更多
关键词 acyl-CoA synthetase long-chain family member 4 ferroptosis glutathione peroxidase 4 heme oxygenase-1 inflammation iron lipid peroxidation METFORMIN NEUROPROTECTION spinal cord injury
下载PDF
Progress in the generation of spinal cord organoids over the past decade and future perspectives
14
作者 Gang Zhou Siyuan Pang +1 位作者 Yongning Li Jun Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1013-1019,共7页
Spinal cord organoids are three-dimensional tissues derived from stem cells that recapitulate the primary morphological and functional characteristics of the spinal cord in vivo.As emerging bioengineering methods have... Spinal cord organoids are three-dimensional tissues derived from stem cells that recapitulate the primary morphological and functional characteristics of the spinal cord in vivo.As emerging bioengineering methods have led to the optimization of cell culture protocols,spinal cord organoids technology has made remarkable advancements in the past decade.Our literature search found that current spinal cord organoids do not only dynamically simulate neural tube formation but also exhibit diverse cytoarchitecture along the dorsal-ventral and rostral-caudal axes.Moreover,fused organoids that integrate motor neurons and other regionally specific organoids exhibit intricate neural circuits that allows for functional assessment.These qualities make spinal cord organoids valuable tools for disease modeling,drug screening,and tissue regeneration.By utilizing this emergent technology,researchers have made significant progress in investigating the pathogenesis and potential therapeutic targets of spinal cord diseases.However,at present,spinal cord organoid technology remains in its infancy and has not been widely applied in translational medicine.Establishment of the next generation of spinal cord organoids will depend on good manufacturing practice standards and needs to focus on diverse cell phenotypes and electrophysiological functionality evaluation. 展开更多
关键词 development organoid-on-a-chip pluripotent stem cells PROGRESS spinal cord diseases spinal cord organoids VASCULARIZATION
下载PDF
GRIK1 promotes glioblastoma malignancy and is a novel prognostic factor of poor prognosis
15
作者 GUOQIANG HOU XINHANG XU WEIXING HU 《Oncology Research》 SCIE 2024年第4期727-736,共10页
Primary tumors of the central nervous system(CNS)are classified into over 100 different histological types.The most common type of glioma is derived from astrocytes,and the most invasive glioblastoma(WHO IV)accounts f... Primary tumors of the central nervous system(CNS)are classified into over 100 different histological types.The most common type of glioma is derived from astrocytes,and the most invasive glioblastoma(WHO IV)accounts for over 57%of these tumors.Glioblastoma(GBM)is the most common and fatal tumor of the CNS,with strong growth and invasion capabilities,which makes complete surgical resection almost impossible.Despite various treatment methods such as surgery,radiotherapy,and chemotherapy,glioma is still an incurable disease,and the median survival time of patients with GBM is shorter than 15 months.Thus,molecular mechanisms of GBM characteristic invasive growth need to be clarified to improve the poor prognosis.Glutamate ionotropic receptor kainate type subunit 1(GRIK1)is essential for brain function and is involved in many mental and neurological diseases.However,GRIK1’s pathogenic roles and mechanisms in GBM are still unknown.Single-nuclear RNA sequencing of primary and recurrent GBM samples revealed that GRIK1 expression was noticeably higher in the recurrent samples.Moreover,immunohistochemical staining of an array of GBM samples showed that high levels of GRIK1 correlated with poor prognosis of GBM,consistent with The Cancer Genome Atlas database.Knockdown of GRIK1 retarded GBM cells growth,migration,and invasion.Taken together,these findings show that GRIK1 is a unique and important component in the development of GBM and may be considered as a biomarker for the diagnosis and therapy in individuals with GBM. 展开更多
关键词 GLIOBLASTOMA GRIK1 INVASION PROLIFERATION PROGNOSIS
下载PDF
Progress in neurorehabilitation research and the support by the National Natural Science Foundation of China from 2010 to 2022
16
作者 Qian Tao Honglu Chao +1 位作者 Dong Fang Dou Dou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期226-232,共7页
The National Natural Science Foundation of China is one of the major funding agencies for neuro rehabilitation research in China.This study reviews the frontier directions and achievements in the field of neurorehabil... The National Natural Science Foundation of China is one of the major funding agencies for neuro rehabilitation research in China.This study reviews the frontier directions and achievements in the field of neurorehabilitation in China and wo rldwide.We used data from the Web of Science Core Collection(WoSCC) database to analyze the publications and data provided by the National Natural Science Foundation of China to analyze funding information.In addition,the prospects for neurorehabilitation research in China are discussed.From 2010 to 2022,a total of 74,220 publications in neurorehabilitation were identified,with there being an overall upward tendency.During this period,the National Natural Science Foundation of China has funded 476 research projects with a total funding of 192.38 million RMB to support neuro rehabilitation research in China.With the support of the National Natural Science Foundation of China,China has made some achievements in neurorehabilitation research.Research related to neurorehabilitation is believed to be making steady and significant progress in China. 展开更多
关键词 brain computer interface invasive neuromodulation National Natural Science Foundation of China(NSFC) neuroreha bilitation non-invasive brain stimulation PUBLICATION rehabilitation robotics virtual reality
下载PDF
The advantages of multi-level omics research on stem cell-based therapies for ischemic stroke
17
作者 Yiqing Wang Chuheng Chang +2 位作者 Renzhi Wang Xiaoguang Li Xinjie Bao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1998-2003,共6页
Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Altho... Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke. 展开更多
关键词 ischemic stroke mesenchymal stem cells metabolomics multilevel omics neural stem/progenitor cells NEUROINFLAMMATION PATHOPHYSIOLOGY proteomics stem cell therapy TRANSCRIPTOMES
下载PDF
Two-photon live imaging of direct glia-to-neuron conversion in the mouse cortex
18
作者 Zongqin Xiang Shu He +13 位作者 Rongjie Chen Shanggong Liu Minhui Liu Liang Xu Jiajun Zheng Zhouquan Jiang Long Ma Ying Sun Yongpeng Qin Yi Chen Wen Li Xiangyu Wang Gong Chen Wenliang Lei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1781-1788,共8页
Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for ... Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction. 展开更多
关键词 astrocyte-to-neuron conversion Ca2+imaging direct lineage conversion GLIA ASTROCYTE in vivo reprogramming lineage-tracing mice NeuroD1 NEURON two-photon imaging
下载PDF
First report of the histopathological effect of electrocautery using on the urethral taste rosea during glans penis injury by incision in rabbits
19
作者 Ozgur Caglar Ayhan Kanat +2 位作者 Mehmet Dumlu Aydin Nezih Akca Sevilay Ozmen 《Asian Journal of Urology》 CSCD 2024年第1期115-120,共6页
Objective:Currently,electrocautery devices have frequently been used in penile surgical procedures.We hypothesized that electrocautery using during penile surgical procedures may harm the taste rosea and the dorsal ne... Objective:Currently,electrocautery devices have frequently been used in penile surgical procedures.We hypothesized that electrocautery using during penile surgical procedures may harm the taste rosea and the dorsal nerve of the penis or clitoris.Methods:Eighteen young age male New Zealand rabbits were studied:five in the control(Group I,n=5),five in the penile surgery without using electrocautery(sham group,Group II,n=5),eight in the monopolar cautery(study group,Group III,n=8)groups under general anesthesia.The animals were followed for 3 weeks and sacrificed.Penile tissue—pudendal nerve root complexes and dorsal root ganglion of sacral 3 level were examined using stereological methods.The results were compared statistically.Results:The live and degenerated taste bud-like structures and degenerated neuron densities of pudendal ganglia(mean±standard deviation,n/mm^(3))were estimated as 198±24/mm^(3),4±1/mm^(3),and 5±1/mm^(3) in Group I;8±3/mm^(3),174±21/mm^(3),and 24±7/mm^(3) in Group II;and 21±5/mm^(3),137±14/mm^(3),and 95±12/mm^(3) in Group III,respectively.Neurodegeneration of taste buds and pudendal ganglia was significantly different between groups.Conclusion:Intact spinal cord and normal parasympathetic and thoracolumbar sympathetic networks are crucial for human sexual function.The present study indicates that the glans penis injury by using electrocautery may lead to pudendal ganglia degeneration.Iatrogenic damage to taste rosea and retrograde degeneration of the pudendal nerve may be the cause of sexual dysfunction responsible mechanism. 展开更多
关键词 Urethral taste rosea Tastebuds Pudendalnerve Degeneration Penile surgery
下载PDF
miR-200b-3p accelerates progression of pituitary adenomas by negatively regulating expression of RECK
20
作者 XIAOXI WANG YANFEI JIA +8 位作者 QIANG LI QIANG YANG YINGFENG LIU BEIFENG WEI XIANG NIU YINJIE ZHANG XIAODONG LUO ZIYU ZHAO PENG WANG 《Oncology Research》 SCIE 2024年第5期933-941,共9页
MicroRNA(miR)-200b-3p has been associated with many tumors,but its involvement in pituitary adenoma is unclear.This study investigated the molecular mechanism underlying miR-200b-3p regulation in pituitary adenomas to... MicroRNA(miR)-200b-3p has been associated with many tumors,but its involvement in pituitary adenoma is unclear.This study investigated the molecular mechanism underlying miR-200b-3p regulation in pituitary adenomas to provide a theoretical basis for treatment.Bioinformatics was used to analyze pituitary adenoma-related genes and screen new targets related to RECK and miRNA.As well,the relationship between miR-200b-3p and RECK protein was verified using a double-luciferase reporter gene assay.The expression of miR-200b-3p in clinical samples was analyzed by in situ hybridization.Transfection of the miR-200b-3p inhibitor and small interfering-RECK(si-RECK)was verified by qPCR.GH3 cell viability and proliferation were detected using CCK8 and EdU assays.Apoptosis was detected by flow cytometry and western blotting.Wound healing and Transwell assays were used to detect cell migration and invasion.The effects of miR-200b-3p and RECK on GH3 cells were verified using salvage experiments.miR-200b-3p was highly expressed in pituitary tumor tissue.Inhibitors of miR-200b-3p inhibited cell proliferation promoted cell apoptosis,inhibited invasion and migration,and inhibited the expression of matrix metalloproteinases.Interestingly,miR-200b-3p negatively regulated RECK.The expression of RECK in pituitary adenoma tissues was lower than that in neighboring tissues.Si-RECK rescued the function of miR-200b-3p inhibitors in the above cellular behaviors,and miR-200b-3p accelerated the development of pituitary adenoma by negatively regulating RECK expression.In summary,this study investigated the molecular mechanism by which miR-200b-3p regulates the progression of pituitary adenoma through the negative regulation of RECK.The findings provide a new target for the treatment of pituitary adenoma. 展开更多
关键词 Pituitary adenomas miR-200b-3p RECK Matrix metalloproteinase
下载PDF
上一页 1 2 185 下一页 到第
使用帮助 返回顶部