期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
Transforming growth factor-beta 1 enhances discharge activity of cortical neurons
1
作者 Zhihui Ren Tian Li +5 位作者 Xueer Liu Zelin Zhang Xiaoxuan Chen Weiqiang Chen Kangsheng Li Jiangtao Sheng 《Neural Regeneration Research》 SCIE CAS 2025年第2期548-556,共9页
Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de... Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system. 展开更多
关键词 central nervous system cortical neurons ERK firing properties JNK Nav1.3 p38 transforming growth factor-beta 1 traumatic brain injury voltage-gated sodium currents
下载PDF
GRIK1 promotes glioblastoma malignancy and is a novel prognostic factor of poor prognosis
2
作者 GUOQIANG HOU XINHANG XU WEIXING HU 《Oncology Research》 SCIE 2024年第4期727-736,共10页
Primary tumors of the central nervous system(CNS)are classified into over 100 different histological types.The most common type of glioma is derived from astrocytes,and the most invasive glioblastoma(WHO IV)accounts f... Primary tumors of the central nervous system(CNS)are classified into over 100 different histological types.The most common type of glioma is derived from astrocytes,and the most invasive glioblastoma(WHO IV)accounts for over 57%of these tumors.Glioblastoma(GBM)is the most common and fatal tumor of the CNS,with strong growth and invasion capabilities,which makes complete surgical resection almost impossible.Despite various treatment methods such as surgery,radiotherapy,and chemotherapy,glioma is still an incurable disease,and the median survival time of patients with GBM is shorter than 15 months.Thus,molecular mechanisms of GBM characteristic invasive growth need to be clarified to improve the poor prognosis.Glutamate ionotropic receptor kainate type subunit 1(GRIK1)is essential for brain function and is involved in many mental and neurological diseases.However,GRIK1’s pathogenic roles and mechanisms in GBM are still unknown.Single-nuclear RNA sequencing of primary and recurrent GBM samples revealed that GRIK1 expression was noticeably higher in the recurrent samples.Moreover,immunohistochemical staining of an array of GBM samples showed that high levels of GRIK1 correlated with poor prognosis of GBM,consistent with The Cancer Genome Atlas database.Knockdown of GRIK1 retarded GBM cells growth,migration,and invasion.Taken together,these findings show that GRIK1 is a unique and important component in the development of GBM and may be considered as a biomarker for the diagnosis and therapy in individuals with GBM. 展开更多
关键词 GLIOBLASTOMA GRIK1 INVASION PROLIFERATION PROGNOSIS
下载PDF
Multi-cohort comprehensive analysis unveiling the clinical value and therapeutic effect of GNAL in glioma
3
作者 ZHEN LIU LIANGWANG YANG +5 位作者 ZHENGXING XIE HUI YU TIANYI GU DAOMING SHI NING CAI SHENGHUA ZHUO 《Oncology Research》 SCIE 2024年第5期965-981,共17页
Clinical data indicates that glioma patients have poor treatment outcomes and clinical prognosis.The role of olfactory signaling pathway-related genes(OSPRGs)in glioma has not been fully elucidated.In this study,we ai... Clinical data indicates that glioma patients have poor treatment outcomes and clinical prognosis.The role of olfactory signaling pathway-related genes(OSPRGs)in glioma has not been fully elucidated.In this study,we aimed to investigate the role and relationship between OSPRGs and glioma.Univariate and multivariate Cox regression analyses were performed to assess the relationship between OSPRGs and the overall survival of glioma based on public cohorts,and the target gene(G Protein Subunit Alpha L,GNAL)was screened.The association of GNAL expression with clinicopathological characteristics,gene mutation landscape,tumor immune microenvironment(TIME),deoxyribonucleic acid(DNA)methylation,and naris-occlusion controlled genes(NOCGs)was performed.Immunohistochemistry was used to evaluate GNAL level in glioma.Further analysis was conducted to evaluate the drug sensitivity,immunotherapy response,and functional enrichment of GNAL.GNAL was an independent prognostic factor,and patients with low GNAL expression have a poor prognosis.Expression of GNAL was closely associated with clinicopathological characteristics,DNA methylation,and several immune-related pathways.Immune infiltration analysis indicated that GNAL levels were negatively correlated with immune scores.GNAL low-expression group showed efficacy with anti-PD-1 therapy.Ten compounds with significantly different half-maximal inhibitory concentration(IC50)values between the GNAL high and low-expression groups were identified.Furthermore,its expression was associated with several immune cells,immune-related genes,and NOCGs.The expression of GNAL is closely associated with clinicopathological characteristics,TIME,and the response to therapeutic interventions,highlighting its potential as a prognostic biomarker for glioma. 展开更多
关键词 GLIOMA OLFACTION GNAL Tumor immune microenvironment Immunotherapy/chemotherapy response
下载PDF
Mechanism of NURP1 in temozolomide resistance in hypoxiatreated glioma cells via the KDM3A/TFEB axis 被引量:1
4
作者 TAO LI XIN FU +4 位作者 JIE WANG WEI SHANG XIAOTONG WANG LINYUN ZHANG JUN LI 《Oncology Research》 SCIE 2023年第3期345-359,共15页
Temozolomide(TMZ)resistance is a major obstacle in glioma treatment.Nuclear protein-1(NUPR1)is a regulator of glioma progression.This study investigated the mechanism of NUPR1 in TMZ resistance in hypoxiatreated gliom... Temozolomide(TMZ)resistance is a major obstacle in glioma treatment.Nuclear protein-1(NUPR1)is a regulator of glioma progression.This study investigated the mechanism of NUPR1 in TMZ resistance in hypoxiatreated glioma cells and its mechanism in modulating autophagy.We treated TMZ-resistant cells U251-TMZ and T98G-TMZ to normoxia or hypoxia and silenced NUPR1 in hypoxia-treated U251-TMZ and T98G-TMZ cells to assess cell viability,proliferation,apoptosis,LC3-II/LC3-I and p62 expressions,and autophagic flux under different concentrations of TMZ.We found that hypoxia upregulated NUPR1 expression and autophagy while NUPR1 silencing suppressed hypoxia-induced TMZ resistance and autophagy in glioma cells.We also investigated the interaction between NUPR1 and lysine demethylase 3A(KDM3A),as well as the enrichments of KDM3A and H3 lysine 9 dimethylation(H3K9me2)in the transcription factor EB(TFEB)promoter region.Our results suggest that hypoxia-induced NUPR1 promotes TFEB transcription by binding to KDM3A and reducing H3K9me2 levels,thereby augmenting glioma cell autophagy and TMZ resistance.Moreover,the overexpression of KDM3A or TFEB promoted glioma cell autophagy.In a xenograft tumor model,silencing NUPR1 suppressed TMZ resistance in glioma cells in vivo.Overall,our findings highlight a mechanism by which NUPR1 enhances glioma cell autophagy and TMZ resistance via the KDM3A/TFEB axis. 展开更多
关键词 NUPR1 AUTOPHAGY TMZ resistance GLIOMA KDM3A
下载PDF
Electroacupuncture in the repair of spinal cord injury:inhibiting the Notch signaling pathway and promoting neural stem cell proliferation 被引量:33
5
作者 Xin Geng Tao Sun +3 位作者 Jing-hui Li Ning Zhao Yong Wang Hua-lin Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期394-403,共10页
Electroacupuncture for the treatment of spinal cord iniury has a good dinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw- ley rats was clamped fo... Electroacupuncture for the treatment of spinal cord iniury has a good dinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw- ley rats was clamped for 60 seconds. Dazhui (GV14) and Mingmen (GV4) acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expres- sion of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem ceils. 展开更多
关键词 nerve regeneration spinal cord electroacupuncture therapy neural stem cells notchsignaling pathway ASTROCYTES inflammation survival curve PROLIFERATION differentiation real-timequantitative PCR western blot assay neural regeneration
下载PDF
Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats 被引量:11
6
作者 Na Zhang Gen-Yang Cheng +1 位作者 Xian-Zhi Liu Feng-Jiang Zhang 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2014年第5期386-389,共4页
Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue.Methods:Fourty eight rats were randomly divided into four groups(n=12):sham operation group,30 min ischemia 60 min reperfusion gr... Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue.Methods:Fourty eight rats were randomly divided into four groups(n=12):sham operation group,30 min ischemia 60 min reperfusion group,60 min ischemia 60 min reperfusion group,and120 min ischemia 60 min reperfusion group.The brain tissues were taken after the experiment.TUNEL assay was used to detect the brain cell apoptosis,and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.Results:Renal ischemiareperiusion induced apoptosis of brain tissues,and the apoptosis increased with prolongation of ischemia time.The detection at the molecular level showed decreased Bcl-2 expression,increased Bax expression,upreguiated expression of NF- κB and its downstream factor COX-2/PGE2.Conclusions:Acute renal ischemia-reperfusion can cause brain tissue damage,manifested as induced brain tissues apoptosis and inflammation activation. 展开更多
关键词 ACUTE RENAL ISCHEMIA REPERFUSION Brain tissue damage BCL-2 NF-ΚB
下载PDF
Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage 被引量:8
7
作者 Lu Gao Ping-Ping Li +6 位作者 Tian-Yu Shao Xiang Mao Hao Qi Bing-Shan Wu Ming Shan Lei Ye Hong-Wei Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第7期1350-1359,共10页
Interleukin 17(IL-17)and its main producer,T cell receptorγδcells,have neurotoxic effects in the pathogenesis of intracerebral hemorrhage(ICH),aggravating brain injuries.To investigate the correlation between IL-17 ... Interleukin 17(IL-17)and its main producer,T cell receptorγδcells,have neurotoxic effects in the pathogenesis of intracerebral hemorrhage(ICH),aggravating brain injuries.To investigate the correlation between IL-17 and ICH,we dynamically screened serum IL-17 concentrations using enzyme-linked immunosorbent assay and explored the clinical values of IL-17 in ICH patients.There was a significant negative correlation between serum IL-17 level and neurological recovery status in ICH patients(r=–0.498,P<0.01).To study the neurotoxic role of IL-17,C57 BL/6 mice were used to establish an ICH model by injecting autologous blood into the caudate nucleus.Subsequently,the mice were treated with mouse neural stem cells(NSCs)and/or IL-17 neutralizing antibody for 72 hours.Flow cytometry,brain water content detection,Nissl staining,and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling results indicated that NSC transplantation significantly reduced IL-17 expression in peri-hematoma tissue,but there was no difference in T cell receptorγδcells.Compared with the ICH group,there were fewer apoptotic bodies and more Nissl bodies in the ICH+NSC group and the ICH+NSC+IL-17 group.To investigate the potential effect of IL-17 on directional differentiation of NSCs,we cultured mouse NSCs(NE-4 C)alone or co-cultured them with T cell receptorγδcells,which were isolated from mouse peripheral blood mononuclear cells,for 7 days.The results of western blot assays revealed that IL-17 secreted by T cell receptorγδcells reduced the differentiation of NSCs into astrocytes and neurons,while IL-17 neutralization relieved the inhibition of directional differentiation into astrocytes rather than neurons.In conclusion,serum IL-17 levels were elevated in the early stage of ICH and were negatively correlated with outcome in ICH patients.Animal experiments and cytological investigations therefore demonstrated that IL-17 probably has neurotoxic roles in ICH because of its inhibitory effects on the directional differentiation of NSCs.The application of IL-17 neutralizing antibody may promote the directional differentiation of NSCs into astrocytes.This study was approved by the Clinical Research Ethics Committee of Anhui Medical University of China(For human study:Approval No.20170135)in December 2016.All animal handling and experimentation were reviewed and approved by the Institutional Animal Care and Use Committee of Anhui Medical University(approval No.20180248)in December 2017. 展开更多
关键词 antibody neutralization ASTROCYTES directional differentiation interleukin 17 intracerebral hemorrhage neural stem cells Nissl staining recovery T cell receptorγδcells TUNEL staining
下载PDF
Combination of mild therapeutic hypothermia and adipose-derived stem cells for ischemic brain injury 被引量:9
8
作者 Kai Zhao Rui Li +11 位作者 Sheng Bi Yu Li Long Liu Yu-Long Jia Peng Han Chang-Cong Gu Xi-Ze Guo Wan-Ping Zhang Chun Wang Chun-Ying Pei Lin-Lu Tian Li-Xian Li 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1759-1770,共12页
Mild therapeutic hypothermia has been shown to mitigate cerebral ischemia, reduce cerebral edema, and improve the prognosis of patients with cerebral ischemia. Adipose-derived stem cell-based therapy can decrease neur... Mild therapeutic hypothermia has been shown to mitigate cerebral ischemia, reduce cerebral edema, and improve the prognosis of patients with cerebral ischemia. Adipose-derived stem cell-based therapy can decrease neuronal death and infiltration of inflammatory cells, exerting a neuroprotective effect. We hypothesized that the combination of mild therapeutic hypothermia and adipose-derived stem cells would be neuroprotective for treatment of stroke. A rat model of transient middle cerebral artery occlusion was established using the nylon monofilament method. Mild therapeutic hypothermia(33°C) was induced after 2 hours of ischemia. Adipose-derived stem cells were administered through the femoral vein during reperfusion. The severity of neurological dysfunction was measured by a modified Neurological Severity Score Scaling System. The area of the infarct lesion was determined by 2,3,5-triphenyltetrazolium chloride staining. Apoptotic neurons were detected by terminal deoxynucleotidyl transferase-mediated d UTP-biotin nick end labeling(TUNEL) staining. The regeneration of microvessels and changes in the glial scar were detected by immunofluorescence staining. The inflammatory responses after ischemic brain injury were evaluated by in situ staining using markers of inflammatory cells. The expression of inflammatory cytokines was measured by reverse transcription-polymerase chain reaction. Compared with mild therapeutic hypothermia or adipose-derived stem cell treatment alone, their combination substantially improved neurological deficits and decreased infarct size. They synergistically reduced the number of TUNEL-positive cells and glial fibrillary acidic protein expression, increased vascular endothelial growth factor levels, effectively reduced inflammatory cell infiltration and down-regulated the m RNA expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α and interleukin-6. Our findings indicate that combined treatment is a better approach for treating stroke compared with mild therapeutic hypothermia or adipose-derived stem cells alone. 展开更多
关键词 nerve regeneration brain injury stroke rats transient middle cerebrum artery occlusion cerebral resuscitation mild therapeutic hypothermia adipose-derived stem cells combination therapy neuroprotection neuronal cell death neural regeneration
下载PDF
Transformation of human amniotic epithelial cells into neuron-like cells in the microenvironment of traumatic brain injury in vivo and in vitro 被引量:10
9
作者 Yi Lu Guozhen Hui +3 位作者 Zhiyuan Wu Tianjin Liu Xunhe Ji Lihe Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第10期744-749,共6页
Survival and differentiation of transplanted cells is closely related to the local microenvironment.The present study cultured human amniotic epithelial cells(HAECs) in a simulated microenvironment in vitro comprisi... Survival and differentiation of transplanted cells is closely related to the local microenvironment.The present study cultured human amniotic epithelial cells(HAECs) in a simulated microenvironment in vitro comprising RPMI 1640 culture medium and the solution extracted from injured brain tissues.Some HAECs were round,triangular in form or irregularly shaped,with extended neuron-like processes;some of the processes were interconnected,representing neuron-like morphology and some HAECs were microtubule-associated protein 2-positive.HAECs survived for at least 4 weeks following transplantation into the center and edges of the trauma focus with traumatic brain injury,and were microtubule-associated protein 2-positive.Moreover,the motor function of rat hind limbs was significantly improved. 展开更多
关键词 traumatic brain injury MICROENVIRONMENT TRANSPLANTATION human amniotic epithelialcells neural cell differentiation neural regeneration
下载PDF
The occurrence of diffuse axonal injury in the brain:associated with the accumulation and clearance of myelin debris 被引量:4
10
作者 Liang Wen Jun Xu +5 位作者 Tianxiang Zhan Hao Wang Xin Huang Wenchao Liu Xiaofeng Yang Renya Zhan 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第21期1902-1906,共5页
The accumulation of myelin debris may be a major contributor to the inlfammatory response after diffuse axonal injury. In this study, we examined the accumulation and clearance of myelin debris in a rat model of diffu... The accumulation of myelin debris may be a major contributor to the inlfammatory response after diffuse axonal injury. In this study, we examined the accumulation and clearance of myelin debris in a rat model of diffuse axonal injury. Oil Red O staining was performed on sections from the cerebral cortex, hippocampus and brain stem to identify the myelin debris. Seven days after diffuse axonal injury, many Oil Red O-stained particles were observed in the cerebral cortex, hippocampus and brain stem. In the cerebral cortex and hippocampus, the amount of myelin debris peaked at 14 days after injury, and decreased signiifcantly at 28 days. In the brain stem, the amount of myelin debris peaked at 7 days after injury, and decreased signiifcantly at 14 and 28 days. In the cortex and hippocampus, some myelin debris could still be observed at 28 days after diffuse axonal injury. Our ifndings suggest that myelin debris may persist in the rat central ner-vous system after diffuse axonal injury, which would hinder recovery. 展开更多
关键词 nerve regeneration neurodegeneration diffuse axonal injury myelin debris neuroin-flammation traumatic brain injury head trauma central nervous system inflammation AXON prognosis NSFC grants neural regeneration
下载PDF
In vitro culture and differentiation of rat embryonic midbrain-derived neural stem cells 被引量:19
11
作者 Xingli Deng Ruen Liu +5 位作者 Zhongtang Feng Jing Guo Wu Wang Deqiang Lei Hongyan Li Zhihua Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第11期1241-1244,共4页
BACKGROUND: Midbrain-derived neural stem cells (mNSCs) can differentiate into functional mature dopaminergic neurons. The mNSCs are considered the ideal choice for cell therapy of Parkinson's disease. OBJECTIVE: ... BACKGROUND: Midbrain-derived neural stem cells (mNSCs) can differentiate into functional mature dopaminergic neurons. The mNSCs are considered the ideal choice for cell therapy of Parkinson's disease. OBJECTIVE: To isolate rat embryonic mNSCs and to observe the differentiation characteristics of mNSCs induced by cell growth-promoting factors. DESIGN, TIME AND SETTING: An in vitro cell culture study based on the molecular biology of nerve cells was carried out at the Institute of Clinical Medicine, China-Japan Friendship Hospital (China) from March to November 2007. MATERIALS: Sprague Dawley rats at embryonic day 14 were used in this study. Nestin antibody, β-Ⅲ tubulin antibody, glial fibrillary acidic protein (GFAP) antibody and cyclic nucleotide 3'-phosphohydrolase (CNPase) antibody were provided by Abcam; DMEM/F12 medium and N2 supplement were provided by Invitrogen; epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF2) were provided by R&D Systems. METHODS: The ventral mesencephalon was dissected from embryonic day 14 rat embryos. By trypsin digestion and mechanical separation, the brain tissue was triturated into a fine single-cell suspension. The cells were cultured in 5 mL serum-free medium containing DMEM/FI 2, 1% N: supplement, 20 ng/mL EGF and FGF2. The mNSCs at the third generation were coated with 10ug/mL polylysine and induced to differentiate in the DMEM/F12 supplemented with 1% fetal bovine serum and 1% N2. MAIN OUTCOME MEASURES: The neural spheres of the third passage were identified by nestin immunofluorescence; at the same time, the cells were induced to differentiate, and the types of differentiated cell were identified by immunofluorescence for β Ⅲ tubulin, GFAP and CNPase. RESULTS: Seven days after primary culture, a great many neurospheres could be obtained by successive pasage. Immunofluorescence assays showed that the neurospheres were nestin positive, and after differentiation, the cells expressed GFAP, CNPase and β -Ⅲ-tubulin. CONCLUSION: Embryonic day 14 rat mNSCs can differentiate into neuron-like cells and glial cells following induction by EGF, FGF2 and N: additive. 展开更多
关键词 neural stem cells cell differentiation in vitro rat embryonic midbrain
下载PDF
JNK3 involvement in nerve cell apoptosis and neurofunctional recovery after traumatic brain injury 被引量:4
12
作者 Jiang Long Li Cai +3 位作者 Jintao Li Lei Zhang Haiyang Yang Tinghua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第16期1491-1499,共9页
Increasing evidence has revealed that the activation of the JNK pathway participates In apoptosis o1 nerve cells and neurological function recovery after traumatic brain injury. However, which genes inI the JNK family... Increasing evidence has revealed that the activation of the JNK pathway participates In apoptosis o1 nerve cells and neurological function recovery after traumatic brain injury. However, which genes inI the JNK family are activated and their role in traumatic brain injury remain unclear. Therefore, in this study, in situ end labeling, reverse transcription-PCR and neurological function assessment were adopted to investigate the alteration of JNK1, JNK2 and JNK3 gene expression in cerebral injured rats, and their role in celt apoptosis and neurological function restoration. Results showed that JNK3 expression significantly decreased at 1 and 6 hours and 1 and 7 days post injury, but that JNK1 and JNK2 expression remained unchanged. In addition, the number of apoptotic nerve cells surrounding the injured cerebral cortex gradually reduced over time post injury. The Neurological Severity Scores gradually decreased over 1,3, 5, 14 and 28 days post injury. These findings suggested that JNK3 expression was downregulated at early stages of brain injury, which may be associated with apoptosis of nerve cells. Downregulation of JNK3 expression may promote the recovery of neurological function following traumatic brain injury. 展开更多
关键词 neural regeneration JNK1 JNK2 JNK3 traumatic brain injury TdT-mediated dUTP nick endlabeling reverse transcription-PCR cell apoptosis neurological function recovery NEUROREGENERATION
下载PDF
Neuroprotective effect of interleukin-6 regulation of voltage-gated Na^+ channels of cortical neurons is time-and dose-dependent 被引量:4
13
作者 Wei Xia Guo-yi Peng +3 位作者 Jiang-tao Sheng Fang-fang Zhu Jing-fang Guo Wei-qiang Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期610-617,共8页
Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorl... Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour expo-sure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL) and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours) by studying voltage-gated Na+ channels using a patch-clamp technique. Volt-age-clamp recording results demonstrated that interleukin-6 suppressed Na+ currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na+channels in rat corti-cal neurons by interleukin-6 is time- and dose-dependent. 展开更多
关键词 nerve regeneration brain injury inflammatory reaction INTERLEUKIN-6 voltage-gated Na+ channel cortical neurons cerebrospinal fluid NEUROIMMUNOMODULATION neuroprotection action potential patch clamp neurophysiology NSFC grants neural regeneration
下载PDF
Brain-derived neurotrophic factor induces neuron-like cellular differentiation of mesenchymal stem cells derived from human umbilical cord blood cells in vitro 被引量:8
14
作者 Lei Chen Zhongguo Zhang +7 位作者 Bing Chen Xiaozhi Liu Zhenlin Liu Hongliang Liu Gang Li Zhiguo Su Junfei Wang Guozhen Hui 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第13期972-977,共6页
Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells test... Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro. 展开更多
关键词 human umbilical cord blood purification and culture brain-derived neurotrophic factor neuron-like cells neural regeneration
下载PDF
Monoamine alterations and rotational asymmetry in a rat model of Parkinson's disease following lateral ventricle transplantation of human amniotic epithelial cells 被引量:6
15
作者 Shouru Xue Xinxin Yang +2 位作者 Wanli Dong Guozhen Hui Lihe GUO 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第12期1007-1012,共6页
BACKGROUND: Human amniotic epithelial cells (HAECs) can differentiate into neurons, astrocytes and oligodendrocytes. They biologically secrete many active neurotrophins and have the capacity to metabolize dopamine ... BACKGROUND: Human amniotic epithelial cells (HAECs) can differentiate into neurons, astrocytes and oligodendrocytes. They biologically secrete many active neurotrophins and have the capacity to metabolize dopamine enzymes. These features underlie a theoretical basis for the treatment of Parkinson's disease (PD). OBJECTIVE: To investigate the survival and differentiation of transplanted HAECs in the lateral ventricle of PD model rats, and to explore its effect on circling behavior, as well as levels of dopamine (DA), the metabolite homovanillic acid, dihydroxyphenyl acetic acid, 5-hydroxyindoleacetic acid, and 5-hydroxytryptamine in the striatum. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, and Shanghai Celstar Institute of Biotechnology from May 2007 to December 2008. MATERIALS: HAECs were derived from the placental chorion following caesarean delivery at the Shanghai International Matemal and Child Health Hospital. 6-hydroxydopamine (6-OHDA), and mouse anti-human Vimentin monoclonal antibody were purchased from Sigma, USA; mouse anti-human nestin and tyrosine hydroxylase (TH) monoclonal antibodies were purchased from Chemicon, USA. METHODS: A total of 114 healthy, adult, Sprague Dawley rats were randomly assigned to two groups: PD model [n = 90, stereotactic microinjection of 2 μL 6-OHDA (3.5 μg/uL) into the striatum] and control (n = 24, no treatment). The 51 successful PD model rats were randomly divided into 3 subgroups (n = 17): HAEC, PBS, and model. The HAEC and PBS groups were respectively injected with 10 μL PBS solution containing 1 × 10^5/mL HAECs or 10 pL PBS into the lateral ventricle. The model group was not treated. MAIN OUTCOME MEASURES: TH protein expression in the striatum was evaluated by immunohistochemistry 5 weeks after HAEC transplantation. At 10 weeks, HAEC survival in the lateral ventricle was investigated by immunofluorescent staining; differentiation of HAECs in the lateral and third ventricles was examined by TH immunohistochemistry; concentrations of DA, homovanillic acid, dihydroxyphenyl acetic acid, 5-hydroxyindoleacetic acid, and 5-hydroxytryptamine in the striatum, as well as DA concentration in the cerebrospinal fluid, were measured with high-performance liquid chromatography-electrochemical detection. Circling behavior of PD model rats was consecutively observed for 10 weeks following intraperitoneal injection of amphetamine 1 week after successful model establishment. RESULTS: tn the HAEC group, the number of TH-positive cells significantly increased in the striatum, and circling behavior significantly decreased, compared with the PBS and model groups (P 〈 0.01). In addition, monoamine concentrations in the striatum, as well as DA concentrations in the cerebrospinal fluid, significantly increased, compared with the PBS group (P 〈 0.05-0.01). Moreover, a large number of nestin-, vimentin-, and TH-positive cells were observed in the lateral and third ventricles following HAEC injection.CONCLUSION: HAECs survived for 10 weeks with no overgrowth following transplantation into the lateral ventricle of PD model rats. Moreover, the cells differentiated into dopaminergic neurons, which increased DA secretion. HAEC transplantation improved cycling behavior in PD model rats. 展开更多
关键词 human amniotic epithelial cells Parkinson's disease model lateral ventricle cell transplantation DOPAMINE
下载PDF
Differentiation of embryonic versus adult rat neural stem cells into dopaminergic neurons in vitro 被引量:6
16
作者 Chunlong Ke Baili Chen +1 位作者 Shaolei Guo Chao Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第8期832-836,共5页
BACKGROUND:It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons ... BACKGROUND:It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons could be used for the treatment of Parkinson’s disease. However, little is known about the differences in dopaminergic differentiation between neural stem cells derived from adult and embryonic rats. OBJECTIVE: To study the ability of rat adult and embryonic-derived neural stem cells to differentiate into dopaminergic neurons in vitro. DESIGN: Randomized grouping design. SETTING: Department of Neurosurgery in the First Affiliated Hospital of Sun Yat-sen University. MATERIALS: This experiment was performed at the Surgical Laboratory in the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, Guangdong, China) from June to December 2007. Eight, adult, male, Sprague Dawley rats and eight, pregnant, Sprague Dawley rats (embryonic day 14 or 15) were provided by the Experimental Animal Center of Sun Yat-sen University. METHODS: Neural stem cells derived from adult and embryonic rats were respectively cultivated in serum-free culture medium containing epidermal growth factor and basic fibroblast growth factor. After passaging, neural stem cells were differentiated in medium containing interleukin-1α, interleukin-11, human leukemia inhibition factor, and glial cell line-derived neurotrophic factor. Six days later, cells were analyzed by immunocytochemistry and flow cytometry. MAIN OUTCOME MEASURES: Alterations in cellular morphology after differentiation of neural stem cells derived from adult and embryonic rats; and percentage of tyrosine hydroxylase-positive neurons in the differentiated cells. RESULTS: Neural stem cells derived from adult and embryonic rats were cultivated in differentiation medium. Six days later, differentiated cells were immunoreactive for tyrosine hydroxylase. The percentage of tyrosine hydroxylase positive neurons was (5.6 ± 2.8)% and (17.8 ± 4.2)% for adult and embryonic cells, respectively, with a significant difference between the groups (P 〈 0.01). CONCLUSION: Neural stem cells from embryonic rats have a higher capacity to differentiate into dopaminergic neurons than neural stem cells derived from adult rats. 展开更多
关键词 neural stem cells DIFFERENTIATION dopaminergic neurons
下载PDF
Cerebroprotection with recombinant neuroglobin plasmid in a rat model of focal cerebral ischemia 被引量:3
17
作者 Ji Zhu Wenyuan Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第1期52-57,共6页
BACKGROUND: Adenovirus has been used to develop neuroglobin (Ngb) vectors. Although transfection efficiency is high, induced gene mutation, cytotoxicity, inflammation, and low exogenous gene content have limited it... BACKGROUND: Adenovirus has been used to develop neuroglobin (Ngb) vectors. Although transfection efficiency is high, induced gene mutation, cytotoxicity, inflammation, and low exogenous gene content have limited its application. OBJECTIVE: To observe the effects of recombinant Ngb plasmid in a rat model of focal cerebral ischemia. DESIGN, TIME AND SETTING: Genetically engineered, randomized, controlled, animal experiment was performed at the Laboratory of Chongqing Medical University from May 2006 and January 2007. MATERIALS: 2, 3, 5-triphenyltetrazolium chloride was purchased from Shanghai Sangon Biological Engineering Technology and Services. Rabbit anti-rat Bcl-2 polyclonal antibody, rabbit anti-rat β-actin monoclonal antibody, and FITC-labeled goat anti-rabbit IgG were purchased from Sigma, USA. TUNEL apoptosis kit was purchased from Roche, Germany. METHODS: A total of 54 male, adult, Wistar rats were randomly assigned to 3 groups (n=18): normal saline, plasmid control, and recombinant Ngb (pCDNA3.1 (+)/Ngb). Normal saline, plasmid pCDNA3.1 (+), and recombinant plasmid pCDNA3.1 (+)/Ngb were separately injected into two sites in the rat cerebral cortex, and models of focal ischemia were established by occlusion of the right middle cerebral artery after 24 hours. MAIN OUTCOME MEASURES: Local ischemic damage was detected by 2, 3, 5- triphenyltetrazolium chloride staining, apoptosis in the penumbra was confirmed using the TUNEL method, and Bcl-2 protein expression in the penumbra was determined by indirect immunofluorescent staining and Western blot analysis. RESULTS: Compared with the normal saline and plasmid control groups, cerebral infarction size and the number of apoptotic cells in the pCDNA3.1 (+)/Ngb group were significantly reduced (P 〈 0.01). The percentage of Bcl-2-positive cells in the penumbra of the pCDNA3.1 (+)/Ngb group was significantly increased (P 〈 0.01). The relative expression level of Bcl-2 protein was increased by 40%-50%. CONCLUSION: Recombinant plasmid pCDNA3.1/Ngb provides neuroprotection by upregulating Bcl-2 expression and inhibiting cell apoptosis in the penumbra. 展开更多
关键词 NEUROGLOBIN cerebral ischemia cell apoptosis ischemic penumbra Bcl-2
下载PDF
Icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels in the hippocampus of the senescence-accelerated mouse 被引量:4
18
作者 Zhanwei Zhang Ting Zhang Keli Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第12期885-890,共6页
At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increa... At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increased. Immunohistochemical staining and western blot assay detected significantly increased levels of cyclic adenosine monophosphate response element binding protein These results suggest that icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels and improves learning and memory functions in hippocampus of the senescence-accelerated mouse. 展开更多
关键词 ICARIIN Alzheimer's disease HIPPOCAMPUS phosphorylated cyclic adenosine monophosphate response element binding protein neural regeneration
下载PDF
Yizhijiannao Granule and a combination of its effective monomers,icariin and Panax notoginseng saponins,inhibit early PC12 cell apoptosis induced by beta-amyloid(25-35) 被引量:3
19
作者 Ting Zhang Zhanwei Zhang +2 位作者 Keli Dong Guangcheng Li Hong Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第24期1845-1850,共6页
One of our previous studies showed that Yizhijiannao Granule,a compound Chinese medicine, effectively improved the clinical symptoms of Alzheimer’s disease.In the present study,we established a model of Alzheimer’s ... One of our previous studies showed that Yizhijiannao Granule,a compound Chinese medicine, effectively improved the clinical symptoms of Alzheimer’s disease.In the present study,we established a model of Alzheimer’s disease using beta-amyloid(25-35)in PC12 cells,and treated the cells with Yizhijiannao Granule and its four monomers,i.e.,icariin,catechin,Panax notoginseng saponins,and eleutheroside E.Flow cytometry showed that Yizhijiannao Granule-containing serum, icariin,Panax notoginseng saponins,and icariin+Panax notoginseng saponins were protective against beta-amyloid(25-35)-induced injury in PC12 cells.Icariin in combination with Panax notoginseng saponins significantly inhibited early apoptosis of PC12 cells with beta-amyloid (25-35)-induced injury compared to icariin or Panax notoginseng saponins alone.The effects of icariin+Panax notoginseng saponins were similar to the effects of Yizhijiannao Granule.The findings indicate that two of the effective monomers of Yizhijiannao Granule,icariin and Panax notoginseng saponins,can synergistically inhibit early apoptosis of PC12 cells induced by beta-amyloid(25-35). 展开更多
关键词 Alzheimer’s disease ICARIIN Panax notoginseng Saponins Yizhijiannao Granule Chinese medicine monomer beta-amyloid protein PC12 cell Chinese medicine neural regeneration
下载PDF
Effect of stromal cell-derived factor-1/CXCR4 axis in neural stem cell transplantation for Parkinson’s disease 被引量:4
20
作者 Jiao-Tian Xu Yuan Qian +7 位作者 Wei Wang Xiao-Xiang Chen Yang Li Yu Li Zhi-Yong Yang Xiao-Bin Song Di Lu Xing-Li Deng 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第1期112-119,共8页
Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson’s disease,but its specific mechanism of action is still unclear.Stromal cell-derived factor-1 and its receptor,ch... Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson’s disease,but its specific mechanism of action is still unclear.Stromal cell-derived factor-1 and its receptor,chemokine receptor 4(CXCR4),are important regulators of cell migration.We speculated that the CXCR4/stromal cell-derived factor 1 axis may be involved in the therapeutic effect of neural stem cell transplantation in the treatment of Parkinson’s disease.A Parkinson’s disease rat model was injected with 6-hydroxydopamine via the right ascending nigrostriatal dopaminergic pathway,and then treated with 5μL of neural stem cell suspension(1.5×104/L)in the right substantia nigra.Rats were intraperitoneally injected once daily for 3 days with 1.25 mL/kg of the CXCR4 antagonist AMD3100 to observe changes after neural stem cell transplantation.Parkinson-like behavior in rats was detected using apomorphine-induced rotation.Immunofluorescence staining was used to determine the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Using quantitative real-time polymerase chain reaction,the mRNA expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra were measured.In addition,western blot assays were performed to analyze the protein expression of stromal cell-derived factor-1 and CXCR4.Our results demonstrated that neural stem cell transplantation noticeably reduced apomorphine-induced rotation,increased the mRNA and protein expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra,and enhanced the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Injection of AMD3100 inhibited the aforementioned effects.These findings suggest that the stromal cell-derived factor-1/CXCR4 axis may play a significant role in the therapeutic effect of neural stem cell transplantation in a rat model of Parkinson’s disease.This study was approved by the Animal Care and Use Committee of Kunming Medical University,China(approval No.SYXKK2015-0002)on April 1,2014. 展开更多
关键词 AMD3100 corpus STRIATUM CXCR4 neural stem cells Parkinson’s disease STROMAL cell-derived factor-1 substantia nigra
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部