A partially coherent beam called a radially polarized multi-Gaussian Schell-model power-exponent-phase vortex beam is introduced. Both the analytical formula of the beam propagating through the high-numerical-aperture...A partially coherent beam called a radially polarized multi-Gaussian Schell-model power-exponent-phase vortex beam is introduced. Both the analytical formula of the beam propagating through the high-numerical-aperture objective lens based on the vectorial diffraction theory, and the cross-spectral density matrix of the beam in the focal region are derived. Then,the tight focusing characteristics of the partially coherent radially polarized power-exponent-phase vortex beam are studied numerically, and the intensity distribution, degree of polarization and coherence of the beams in the focusing region with different topological charge, power order, beam index and coherence width are analyzed in detail. The results show that the contour of the spot becomes clearer and smoother with the increase in the beam index, and the focal fields of different structures that include the flattened beam can be obtained by changing the coherence width. In addition, by changing the topological charge and power order, the intensity can gather to a point along the ring. These unique properties will have potential applications in particle capture and manipulation, especially in the manipulation of irregular particles.展开更多
In order to conquer the defect in low precision and small range for measuring optic axial angle based on conoscopic interference method, interference fringe method is proposed. It is not the distance deviating from me...In order to conquer the defect in low precision and small range for measuring optic axial angle based on conoscopic interference method, interference fringe method is proposed. It is not the distance deviating from melatope but fringe numbers to decide optic axial angle. Fringe numbers are divided into integer portion and decimal fraction portion, the decimal fraction portion is calculated by non-linear interpolation method and integer portion is determined by the relative placement of interference fringes in the principal section. Extremum arithmetic of digit image is proposed and can be used to determine the interference fringes conveniently and precisely. After different niobate crystals were measured, the result shows that measurement range of optic axial angle is increased efficiently and measurement error is reduced to 0.1°.展开更多
Ultrashort pulses complicate the frequency conversion in a nonlinear crystal, where group velocity mismatch becomes the main obstacle due to dispersion. We present a design for group velocity compensated second harmon...Ultrashort pulses complicate the frequency conversion in a nonlinear crystal, where group velocity mismatch becomes the main obstacle due to dispersion. We present a design for group velocity compensated second harmonic generation in a modulated nonlinear structure, embedded in a liquid crystal box. In this structure, nonlinear crystals act as sources of signal and liquid crystals compensate for group velocity mismatch originating from nonlinear crystals. There are the advantages of the flexible, controllable birefringence of liquid crystals. Meanwhile, a method calculating the parameters of this type of structure is presented. To make it clear, an example is provided. Furthermore, the structure can also be shaped as a waveguide to support integration into other optical devices, applicable to all-optical processing systems.展开更多
Detector has become an indispensable part of human beings.The increasing demand for photodetectors with high performance has promoted the research of novel materials.At the same time,with the development of rising mat...Detector has become an indispensable part of human beings.The increasing demand for photodetectors with high performance has promoted the research of novel materials.At the same time,with the development of rising material system,two-dimensional(2D)materials attract a lot of attention,while the suitable option for fabricating photodetector is still limited.The prospering of bismuth chalcogenides injected new vitality for material field,thereinto,the unique topological insulator characteristics make the research on bismuth selenide(Bi_(2)X_(3))and bismuth telluride(Bi_(2)X_(3)) intriguing.2D Bi_(2)X_(3) also exhibits unique features among various 2D materials,of which,the adjustable narrow energy band gap and polarization-sensitive photocurrent contribute to the promising application of high performance and broadband photodetector.In this review,from a bottom-up perspective,we summarize fundamental properties,synthesis method,photodetector performance of 2D Bi_(2)X_(3) based on the previous study,which provide an overall perspective of 2D Bi_(2)X_(3).Wherein,the section of the photodetector is specifically discu ssed with regard to pure Bi_(2)X_(3) photodetector and heterojunction photodetector.A brief summary and outlook were also explored in the end.展开更多
Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zo...Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization.Specifically,when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms,the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave.As function demonstrations,we have designed two types of metasurface zone plates:one is a focused linear polarizer,and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves.The simulated and measured results are consistent with theoretical expectations,suggesting that the proposed concept is flexible and feasible.Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.展开更多
Group velocity mismatch becomes the main obstacle for frequency conversion of ultrashort pulses due to dispersion. To solve the problem, one design is proposed for group velocity compensated second harmonic generation...Group velocity mismatch becomes the main obstacle for frequency conversion of ultrashort pulses due to dispersion. To solve the problem, one design is proposed for group velocity compensated second harmonic generation in a periodically modulated BBO crystal structure: the α-BBO/β-BBO multi-layer microstructure. The results show that the device can be well applied from the visible red to the near infrared region.展开更多
We reporte and demonstrate a solid-state laser to achieve controlled generation of order-switchable cylindrical vector beams(CVBs).In the cavity,a group of vortex wave plates(VWPs)with two quarter-wave plates between ...We reporte and demonstrate a solid-state laser to achieve controlled generation of order-switchable cylindrical vector beams(CVBs).In the cavity,a group of vortex wave plates(VWPs)with two quarter-wave plates between the VWPs was utilized to achieve mode conversion and order-switch of CVBs.By utilizing two VWPs of first and third orders,the second and fourth order CVBs were obtained,with mode purities of 96.8%and 94.8%,and sloping efficiencies of 4.45%and 3.06%,respectively.Furthermore,by applying three VWPs of first,second,and third orders,the mode-switchable Gaussian beam,second,fourth,and sixth order CVBs were generated.展开更多
Phase-modulated metasurfaces that can implement the independent manipulation of co-and cross-polarized output waves under circularly polarized[CP]incidence have been proposed.With this,we introduce one particular meta...Phase-modulated metasurfaces that can implement the independent manipulation of co-and cross-polarized output waves under circularly polarized[CP]incidence have been proposed.With this,we introduce one particular metasurface composed of meta-atoms with a phase difference of 2π/3 to generate specific elliptically polarized waves under various polarized incidences.Furthermore,a metasurface composed of these above meta-atoms and the meta-atoms with a phase difference of π/3 arranged in a certain rule can realize polarization conversion function between linearly polarized and CP states.The designs shed new light on multifarious optical devices and may further promote the development of metasurface polarization optics.展开更多
Brillouin optical time-domain analysis(BOTDA)requires frequency mapping of the Brillouin spectrum to obtain environmental information(e.g.,temperature or strain)over the length of the sensing fiber,with the finite fre...Brillouin optical time-domain analysis(BOTDA)requires frequency mapping of the Brillouin spectrum to obtain environmental information(e.g.,temperature or strain)over the length of the sensing fiber,with the finite frequencysweeping time-limiting applications to only static or slowly varying strain or temperature environments.To solve this problem,we propose the use of an optical chirp chain probe wave to remove the requirement of frequency sweeping for the Brillouin spectrum,which enables distributed ultrafast strain measurement with a single pump pulse.The optical chirp chain is generated using a frequency-agile technique via a fast-frequency-changing microwave,which covers a larger frequency range around the Stokes frequency relative to the pump wave,so that a distributed Brillouin gain spectrum along the fiber is realized.Dynamic strain measurements for periodic mechanical vibration,mechanical shock,and a switch event are demonstrated at sampling rates of 25 kHz,2.5 MHz and 6.25 MHz,respectively.To the best of our knowledge,this is the first demonstration of distributed Brillouin strain sensing with a wide-dynamic range at a sampling rate of up to the MHz level.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190953)。
文摘A partially coherent beam called a radially polarized multi-Gaussian Schell-model power-exponent-phase vortex beam is introduced. Both the analytical formula of the beam propagating through the high-numerical-aperture objective lens based on the vectorial diffraction theory, and the cross-spectral density matrix of the beam in the focal region are derived. Then,the tight focusing characteristics of the partially coherent radially polarized power-exponent-phase vortex beam are studied numerically, and the intensity distribution, degree of polarization and coherence of the beams in the focusing region with different topological charge, power order, beam index and coherence width are analyzed in detail. The results show that the contour of the spot becomes clearer and smoother with the increase in the beam index, and the focal fields of different structures that include the flattened beam can be obtained by changing the coherence width. In addition, by changing the topological charge and power order, the intensity can gather to a point along the ring. These unique properties will have potential applications in particle capture and manipulation, especially in the manipulation of irregular particles.
文摘In order to conquer the defect in low precision and small range for measuring optic axial angle based on conoscopic interference method, interference fringe method is proposed. It is not the distance deviating from melatope but fringe numbers to decide optic axial angle. Fringe numbers are divided into integer portion and decimal fraction portion, the decimal fraction portion is calculated by non-linear interpolation method and integer portion is determined by the relative placement of interference fringes in the principal section. Extremum arithmetic of digit image is proposed and can be used to determine the interference fringes conveniently and precisely. After different niobate crystals were measured, the result shows that measurement range of optic axial angle is increased efficiently and measurement error is reduced to 0.1°.
基金Supported by the Natural Science Foundation of Heilongjiang Province under Grant Nos F201312,F2016023 and QC2015086the National Natural Science Foundation of China under Grant No 61405049
文摘Ultrashort pulses complicate the frequency conversion in a nonlinear crystal, where group velocity mismatch becomes the main obstacle due to dispersion. We present a design for group velocity compensated second harmonic generation in a modulated nonlinear structure, embedded in a liquid crystal box. In this structure, nonlinear crystals act as sources of signal and liquid crystals compensate for group velocity mismatch originating from nonlinear crystals. There are the advantages of the flexible, controllable birefringence of liquid crystals. Meanwhile, a method calculating the parameters of this type of structure is presented. To make it clear, an example is provided. Furthermore, the structure can also be shaped as a waveguide to support integration into other optical devices, applicable to all-optical processing systems.
基金financially supported by the National Key Research and Development Program of China(No.2019YFA0705201)Heilongjiang Touyan Team。
文摘Detector has become an indispensable part of human beings.The increasing demand for photodetectors with high performance has promoted the research of novel materials.At the same time,with the development of rising material system,two-dimensional(2D)materials attract a lot of attention,while the suitable option for fabricating photodetector is still limited.The prospering of bismuth chalcogenides injected new vitality for material field,thereinto,the unique topological insulator characteristics make the research on bismuth selenide(Bi_(2)X_(3))and bismuth telluride(Bi_(2)X_(3)) intriguing.2D Bi_(2)X_(3) also exhibits unique features among various 2D materials,of which,the adjustable narrow energy band gap and polarization-sensitive photocurrent contribute to the promising application of high performance and broadband photodetector.In this review,from a bottom-up perspective,we summarize fundamental properties,synthesis method,photodetector performance of 2D Bi_(2)X_(3) based on the previous study,which provide an overall perspective of 2D Bi_(2)X_(3).Wherein,the section of the photodetector is specifically discu ssed with regard to pure Bi_(2)X_(3) photodetector and heterojunction photodetector.A brief summary and outlook were also explored in the end.
文摘Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization.Specifically,when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms,the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave.As function demonstrations,we have designed two types of metasurface zone plates:one is a focused linear polarizer,and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves.The simulated and measured results are consistent with theoretical expectations,suggesting that the proposed concept is flexible and feasible.Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.
文摘Group velocity mismatch becomes the main obstacle for frequency conversion of ultrashort pulses due to dispersion. To solve the problem, one design is proposed for group velocity compensated second harmonic generation in a periodically modulated BBO crystal structure: the α-BBO/β-BBO multi-layer microstructure. The results show that the device can be well applied from the visible red to the near infrared region.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_3813)the Jiangsu Province Key Research and Development Program(No.BE2022143)+1 种基金the National Natural Science Foundation of China(No.62205133)the Natural Science Foundation of Jiangsu Province(No.BK20190953).
文摘We reporte and demonstrate a solid-state laser to achieve controlled generation of order-switchable cylindrical vector beams(CVBs).In the cavity,a group of vortex wave plates(VWPs)with two quarter-wave plates between the VWPs was utilized to achieve mode conversion and order-switch of CVBs.By utilizing two VWPs of first and third orders,the second and fourth order CVBs were obtained,with mode purities of 96.8%and 94.8%,and sloping efficiencies of 4.45%and 3.06%,respectively.Furthermore,by applying three VWPs of first,second,and third orders,the mode-switchable Gaussian beam,second,fourth,and sixth order CVBs were generated.
基金This work was supported by the National Natural Science Foundation of China(Nos.61675147,61735010,and 91838301)National Key Research and Development Program of China(No.2017YFA0700202).
文摘Phase-modulated metasurfaces that can implement the independent manipulation of co-and cross-polarized output waves under circularly polarized[CP]incidence have been proposed.With this,we introduce one particular metasurface composed of meta-atoms with a phase difference of 2π/3 to generate specific elliptically polarized waves under various polarized incidences.Furthermore,a metasurface composed of these above meta-atoms and the meta-atoms with a phase difference of π/3 arranged in a certain rule can realize polarization conversion function between linearly polarized and CP states.The designs shed new light on multifarious optical devices and may further promote the development of metasurface polarization optics.
基金supported by the National Key Scientific Instrument and Equipment Development Project of China(2017YFF0108700)National Natural Science Foundation of China(61575052)。
文摘Brillouin optical time-domain analysis(BOTDA)requires frequency mapping of the Brillouin spectrum to obtain environmental information(e.g.,temperature or strain)over the length of the sensing fiber,with the finite frequencysweeping time-limiting applications to only static or slowly varying strain or temperature environments.To solve this problem,we propose the use of an optical chirp chain probe wave to remove the requirement of frequency sweeping for the Brillouin spectrum,which enables distributed ultrafast strain measurement with a single pump pulse.The optical chirp chain is generated using a frequency-agile technique via a fast-frequency-changing microwave,which covers a larger frequency range around the Stokes frequency relative to the pump wave,so that a distributed Brillouin gain spectrum along the fiber is realized.Dynamic strain measurements for periodic mechanical vibration,mechanical shock,and a switch event are demonstrated at sampling rates of 25 kHz,2.5 MHz and 6.25 MHz,respectively.To the best of our knowledge,this is the first demonstration of distributed Brillouin strain sensing with a wide-dynamic range at a sampling rate of up to the MHz level.