The toxicity of ginkgo kernel is a global concern,restricting its consumption as a medicinal food.This study focuses on eliminating the toxic components,specifically ginkgolic acid,from ginkgo kernel juice.The approac...The toxicity of ginkgo kernel is a global concern,restricting its consumption as a medicinal food.This study focuses on eliminating the toxic components,specifically ginkgolic acid,from ginkgo kernel juice.The approach used was probiotic fermentation with autochthonous lactic acid bacteria combined with macroporous resin.Compared to using lactic acid fermentation alone,adding macroporous resin during probiotic fermentation significantly enhanced the removal of toxic ginkgolic acid and 4'-O-methylpyridoxine from ginkgo kernel juice.After 48 h of fermentation with macroporous resin,the contents of ginkgolic acid and 4'-O-methylpyridoxine decreased by more than 69%and 61%,respectively.Interestingly,the adsorption of microbial growth inhibitors,such as ginkgolic acid,4'-O-methylpyridoxine,and phenolics,by the resin did not hinder the growth of lactic acid bacteria or their metabolic activities involving organic acids and monosaccharides.The study further confirmed that microbial adsorption was the primary reason for removing ginkgolic acid during probiotic fermentation.Also,the adsorption mechanism of ginkgolic acid during probiotic fermentation with macroporous resin was explored.From a mass transfer perspective,incorporating macroporous resin during the probiotic fermentation of ginkgo kernel juice reduced the mass transfer resistance for surface diffusion.Consequently,this lowered the contribution of surface diffusion to the overall diffusion process and facilitated the efficient removal of toxic ginkgolic acid.This work can help to understand the physical mechanism regarding detoxification of ginkgo kernel juice by probiotic fermentation,and offer potential strategies to enhance the safety of ginkgo kernel products.展开更多
Microbial enhanced oil recovery (MEOR) methods apply injection of bacteria to depleted oil reservoirs to produce oil, which had remained unrecovered after the conventional methods of production. The ability ofthermo...Microbial enhanced oil recovery (MEOR) methods apply injection of bacteria to depleted oil reservoirs to produce oil, which had remained unrecovered after the conventional methods of production. The ability ofthermophilic anaerobic bacteria to produce gas as the main mechanism in potential MEOR in high salinities of 70-100 g/L was investigated in this study. Maximum gas production of up to 350 mL per 700 mL of salty solution was produced at a salinity of 90 g/L stably during 2-4 days of experiment. The experimental results were upscaled to the Snorre Oilfield, Norway, and simulated using ECLIPSE software for 27 months. The best scenarios showed that the increase in oil recovery on average was at 21% and 17.8% respectively. This study demonstrated that anaerobic bacteria used in biogas plants could be an attractive candidate for MEOR implementation due to their ability to withstand high temperature and salinity, and produce gas in large volumes.展开更多
Study of the thermodynamic behaviour of CaCl2-H2O-CO2 systems is important in different scientific areas in the chemical and petroleum engineering fields. For example, a system including salt- H20-CO2 is a common syst...Study of the thermodynamic behaviour of CaCl2-H2O-CO2 systems is important in different scientific areas in the chemical and petroleum engineering fields. For example, a system including salt- H20-CO2 is a common system in CO2 geological storage. During carbonate matrix acidizing, this mixture also appears as the spent acid. Hence, study of the behaviour of this system and the solubility of CO2 in CaCl2 brine in different thermodynamic conditions is critical. In this study, CO2 solubility in 0, 1.90 and 4.80 mol/L CaCl2 solutions at 328.15 to 375.15 K and 68.9 to 206.8 bar were measured. These values are normal for oil reservoirs. A popular thermodynamic model is available in the literature for estimating the CO2 solubility in pure water and NaC1 solutions. In this paper, the available model was modified by experimental work to be applicable for CaCl2 as well. Based on the measured data, the component interaction parameters in the base model were adjusted for a CaCl2-H2O-CO2 system. The developed model could predict CO2 solubility in different conditions with remarkable accuracy, particularly for high concentration solutions and at high pressures. This improvement is up to 65% better than in the base model. This model can be used in Darcy scale models for predicting wormhole propagation during carbonate matrix acidizing.展开更多
Sulfur removal from liquid fuels has increased in importance in recent years. Although hydrodesulfurization is the usual method for removing sulfur, the elimination of thiophene compounds using this process is difficu...Sulfur removal from liquid fuels has increased in importance in recent years. Although hydrodesulfurization is the usual method for removing sulfur, the elimination of thiophene compounds using this process is difficult. Photocatalysis is an alternative method being developed for thiophene removal at ambient conditions. Among semiconductors, titania has shown good potential as a photo-catalyst; however, quick recombination of electron holes hinders its commercial use. One way to decrease the recombination rate is to combine carbon nanotubes with a semiconductor. In this work, multiwall carbon nanotube (MWCNT) / titania composites were prepared with different mass ratios of MWCNT to titania using tetraethyl orthotitanate (TEOT) and titanium tetra isopropoxide (TTIP) as precursors of titania. Dibenzothiophene (DBT) photocatalytic removal from n-hexane was measured in both the presence and absence of oxygen. The results indicated that the best removal occurred when the MWCNT to titania ratio was 1. When the ratio exceeded this number, DBT removal efficiency decreased due to light scattering. Also, the composites prepared by TEOT exhibited better efficiency in DBT removal. The research findings suggested that the obtained composite was a visible light active photocatalyst and exhibited better performance in the presence of oxygen. Kinetics of photocatalytic DBT removal was a first-order reaction with removal rate constant 0.7 h–1 obtained at optimum conditions.展开更多
In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the fi...In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the first reactor is for syngas production and the second is for coal pyrolysis)and double layers pattern(catalyst was at upper layer and coal was at lower layer).Besides,pure gases atmosphere including N2,H2,CO,H2-CO were also tested to investigate the mechanism of the coal pyrolysis under different atmospheres.The pyrolysis products including gas,liquid and char were characterized,the result showed that,compared with the inert atmosphere,the tar yield is improved with the reducing atmospheres,as well as the tar quality.The hydrogen partial pressure is the key point for that improvement.In the atmosphere of H2,the tar yield was increased by 31.3%and the contained BTX(benzene,toluene and xylene)and naphthalene were increased by 27.1%and 133.4%.The double reactors pattern also performed outstandingly,with 25.4%increment of tar yield and 25.0%and 79.4%for the BTX and naphthalene.The double layers pattern is not effective enough due to the low temperature(700°C)in which the Ni-based catalyst was not fully activated.展开更多
This study was undertaken to assess the physical, chemical and hydrochemical quality of spring water in the southwestern basin of Jordan during a 60-month follow up monitoring study (April 2009 to April 2014). The sam...This study was undertaken to assess the physical, chemical and hydrochemical quality of spring water in the southwestern basin of Jordan during a 60-month follow up monitoring study (April 2009 to April 2014). The samples were analyzed for temperature, conductivity, dissolved oxygen, pH, major cations, major anions and trace metals. The results show that there were considerable variations among the analyzed samples with respect to their physical and chemical parameters, which lie below the maximum permissible levels of the Jordanian and World Health Organization (WHO) drinking water standards. This study shows that the trace metals of spring water in the study area do not generally pose any health or environmental issues. The assessment of water samples indicates that groundwater, in general, is chemically suitable for drinking and agricultural uses.展开更多
This paper proposes optimization models of crude oil distillation column for both limited and unlimited feed stock and market value of known products prices. The feed to the crude distillation column was assumed to be...This paper proposes optimization models of crude oil distillation column for both limited and unlimited feed stock and market value of known products prices. The feed to the crude distillation column was assumed to be crude oil containing naphtha gas, kerosene, petrol and diesel as the light-light key, light key, heavy key and heavy-heavy key respectively. The models determined maximum concentrations of heavy key in the distillate and light key in the bottom for limited feed stock and market condition. Both were impurities in their respective positions of the column. The limiting constraints were sales specification concentration of light key in the distillate [ ], heavy key in the bottom [ ] and an operating loading constraint of flooding above the feed tray. For unlimited feed stock and market condition, the optimization models determined the optimum separation [ and ] and feed flow rate that would give maximum profit with minimum purity sales specification constraints of light key in the distillate and heavy key in the bottom as stated above. The feed loading was limited by the reboiler capacity. However, there is need to simulate the optimization models for an existing crude oil distillation column of a refinery in order to validate the models.展开更多
An accurate and reliable estimation of minimum miscibility pressure(MMP) of CO2-oil system is a critical task for the design and implementation of CO2 miscible displacement process.In this study,an improved CO2-oil MM...An accurate and reliable estimation of minimum miscibility pressure(MMP) of CO2-oil system is a critical task for the design and implementation of CO2 miscible displacement process.In this study,an improved CO2-oil MMP correlation was developed to predict the MMP values for both pure and impure CO2 injection cases based on ten influential factors,i.e.reservoir temperature(TR),molecular weight of C7+oil components(MWC7+),mole fraction of volatile oil components(xvol),mole fraction of C2-C4 oil components(xC2-C4),mole fraction of C5-C6 oil components(xCs-5-C6),and the gas stream mole fractions of CO2(yCO2),H2S(yH2S),C1(yC1),hydrocarbons(yHC)and N2(yN2).The accuracy of the improved correlation was evaluated against experimental data reported in literature concurrently with those estimated by several renowned correlations.It was found that the improved correlation provided higher prediction accuracy and consistency with literature experimental data than other literature correlations.In addition,the predictive capability of the improved correlation was further validated by predicting an experimentally measured CO2-Oil MMP data,and it showed an accurate result with the absolute deviation of 4.15%.Besides,the differential analysis of the improved correlation was analyzed to estimate the impact of parameters uncertainty in the original MMP data on the calculated results.Also,sensitivity analysis was performed to analyze the influence of each parameter on MMP qualitatively and quantitatively.The results revealed that the increase of xC2-C4,xC5-C6 and yH2 S lead to the decrease of MMP,while the increase of TR,MWC7+,xvol,yCO2,YC1,yHC and yN2 tend to increase the MMP.Overall,the relevance of each parameter with MMP follows the order of TR> xC5-C6> MWC7+> xvol> yH2 S> yHC> yCO2>yC1>yN2>xC2-C4.展开更多
One-dimensional Ⅲ- Ⅴ semiconductor nanostruc- tures show fascinating applications in various fields. These materials have high electron mobil- ity, superior optical properties, and great flexibility in heterostructu...One-dimensional Ⅲ- Ⅴ semiconductor nanostruc- tures show fascinating applications in various fields. These materials have high electron mobil- ity, superior optical properties, and great flexibility in heterostructure design. When applied in ad- vanced nanodevices, the performance is highly de- pendent on the morphology and crystal structure of the nanostructures. Therefore, the full understand- ing and control of crystal structures and morpholo- gies are of importance to develop such applications. As a typical Ⅲ-Ⅴ semiconductor, InP is an especially attractive target for nanowires research due to its extensive uses in various fields. InP nanostructures with different morphologies, such as quantum dots, nanospheres, nanowires, and nanotubes, have been successfully synthesized. However, the facile syn- thesis of InP semiconductor with comb-like morpholo- gies have rarely been reported.展开更多
With the shape selective zeolite catalyst,toluene alkylation with methanol to para-xylene(MTPX)technology could produce highly pure para-xylene(PX)in one step.The lower feedstock cost and less energy consumption in pr...With the shape selective zeolite catalyst,toluene alkylation with methanol to para-xylene(MTPX)technology could produce highly pure para-xylene(PX)in one step.The lower feedstock cost and less energy consumption in products separation make it more competitive compared to the current toluene disproportionation route.Thus,MTPX is regarded as the most reasonable production route for PX production.This article reviews the strategies that applied to the preparation of high-performance catalysts for MTPX,with special focus on the precise control of pore dimension and acid sites distribution in zeolite to achieve the highest selectivity to PX.The outlook of the MTPX catalyst is also proposed to guide the catalyst development in the field.展开更多
A comparative study of Cannabis sativa(Hemp)essential constituents obtained by using Supercritical Fluid Extraction(SCFE),Steam Distillation(SD)and Hydrodistillation(HD)is presented here.The optimized extraction tempe...A comparative study of Cannabis sativa(Hemp)essential constituents obtained by using Supercritical Fluid Extraction(SCFE),Steam Distillation(SD)and Hydrodistillation(HD)is presented here.The optimized extraction temperatures were 130,110and 50℃for hydrodistillation,steam distillation and supercritical fluid extraction respectively.The essential oil of C.sativa was analyzed by using Gas chromatography mass spectrometry(GC-MS).A total of 33,30and 31components have been identified in HD,SD and SCFE respectively.Yield of essential oil using SCFE(0.039%)was more than HD(0.025%)and SD(0.035%)extraction respectively.The main component of sesquiterpenes obtained by hydrodistillation at 130℃with their percentages included caryophyllene(40.58%),trans-α-bergamotene(5.41%),humulene(10.97%),cis-β-farnesene(8.53%)and monoterpenes includedα-pinene(2.13%),d-limonene(6.46%),p-cymol(0.65%)and cineole(2.58%)respectively.The main component of sesquiterpenes obtained by SD steam distillation at110℃including caryophyllene(38.60%)trans-α-bergamotene(4.22%),humulene(10.26%),cis-β-farnesene(6.67%)and monoterpenes includedα-pinene(3.21%),d-limonene(7.07%),p-cymol(2.59%)and cineole(3.88%)whereas the more percentages of major components were obtained by SCFE at 50℃included caryophyllene(44.31%),trans-α-bergamotene(6.79%),humulene(11.97%)cis-β-farnesene(9.71%)and monoterpenes includedα-pinene(0.45%),d-limonene(2.13%)p-cymol(0.19%)and cineole(1.38%)respectively.We found yield/efficiency,chemical composition,quality of the essential oils by supercritical fluid extraction superior in terms of modern,green,saving energy and a rapid approach as compared to traditional techniques.展开更多
Sandstone reservoirs often contain clay particles that can cause damage and reduce permeability during low-salinity water flooding.In this study,the effect of surfactants on fine migration in clay-rich sandstones and ...Sandstone reservoirs often contain clay particles that can cause damage and reduce permeability during low-salinity water flooding.In this study,the effect of surfactants on fine migration in clay-rich sandstones and its impact on oil recovery was investigated.First,the impact of surfactants on interparticle forces in fine-matrix,fine-fine,and oil-matrix systems was modeled.The results showed that both CTAB(cetyltrimethyl ammonium bromide)and QS(quillaja saponin)cause EDL compaction,weakening the repulsive forces.However,SDS(sodium dodecyl sulfate)and TX(triton X-100)do not affect the EDL.Next,the effect of surfactants on IFT reduction and wettability alteration was experimentally investigated.All surfactants reduced IFT due to the surface excessive concentration mechanism.The wettability alteration experiment illustrated that although QS and CTAB compact EDL around oil and matrix particles leading to attraction force augmentation,they both alter wettability through adsorption on matrix and carboxylic groups present in crude oil,respectively.Surfactant aqueous solutions were then injected into various clay-rich sandstone sanpacks,which resulted in increased oil recovery.However,the mechanisms leading to enhanced oil recovery variedby surfactant type.CTAB increased recovery by 10%through IFT reduction and wettability alteration,while SDS and TX increased recovery by 12%and 9%,respectively,through wettability alteration and extreme fine migration.In contrast,partial fine migration in the QS flooding experiment reached a recovery increase of 18%.Permeability trends through experiments were also recorded.During CTAB injection,permeability did not reduce,while QS aqueous solution reduced rock permeability to 5 m D.SDS and TX reduced the magnitude of permeability to 2 m D.In conclusion,this study demonstrates that surfactants can effectively improve oil recovery in clay-rich sandstones by altering the interparticle forces,reducing IFT,and changing wettability.The results suggest that the type of surfactant used should be carefully selected to achieve the desired recovery increase without affecting the permeability of the reservoir.展开更多
This paper reviews some of the major recent advances in single-crystal diamond nanofabrication and its impact in nano-and micromechanical,nanophotonics and optomechanical components.These constituents of integrated de...This paper reviews some of the major recent advances in single-crystal diamond nanofabrication and its impact in nano-and micromechanical,nanophotonics and optomechanical components.These constituents of integrated devices incorporating specific dopants in the material provide the capacity to enhance the sensitivity in detecting mass and forces as well as magnetic field down to quantum mechanical limits and will lead pioneering innovations in ultrasensitive sensing and precision measurements in the realm of the medical sciences,quantum sciences and related technologies.展开更多
Recovery of cellulose fibres from paper mill effluent has been studied using common polysacchatides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing p...Recovery of cellulose fibres from paper mill effluent has been studied using common polysacchatides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86 mg/L of fibre and was most effective among the biopolyrners. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5 cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of fioc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.展开更多
Leptospirosis,a major zoonotic disease widespread in the world,would infect humans and other animals by direct contacting with the soil or water contaminated by the pathogenic leptospires.This report analyzes the accu...Leptospirosis,a major zoonotic disease widespread in the world,would infect humans and other animals by direct contacting with the soil or water contaminated by the pathogenic leptospires.This report analyzes the accuracy of polymerase chain reaction(PCR)assay used in the detection of leptospira specific genes in humans.Seventeen published articles which included 2526 samples satisfied all inclusion standards and were applied to meta-analysis.Pooled sensitivity and specificity were 0.73(95%CI 0.70-0.76)and 0.94(95%CI 0.93-0.95),respectively.Heterogeneity was statistically significant among studies,but none of the sources for heterogeneity(disease stage,PCR type,targeted genes)could adequately interpret this finding.Meta-regression advised that real-time PCR(qPCR)targeted 16 s rRNA would be the best choice for early detection of cases during the acute stage of the disease and was accounted as a good screening tool in all stages of the disease.展开更多
The solubility of Pd(NO_(3))_(2) in water is moderate whereas it is completely soluble in diluted HNO_(3) solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH_(2)(Cr) were synthesized by aqueous solution of Pd(NO_(3))_(2) and P...The solubility of Pd(NO_(3))_(2) in water is moderate whereas it is completely soluble in diluted HNO_(3) solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH_(2)(Cr) were synthesized by aqueous solution of Pd(NO_(3))_(2) and Pd(NO_(3))_(2) solution in dilute HNO_(3) and used for CO oxidation reaction. The catalysts synthesized with Pd(NO_(3))_(2) solution in dilute HNO_(3) showed lower activity. The aqueous solution of Pd(NO_(3))_(2) was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd_(70)Ni_(30)/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd+ Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution of PdNi nanoparticles, and lower dissociation and desorption barriers. Comparison of the catalysts synthesized by MIL-101(Cr) and MIL-101-NH_(2)(Cr) as the supports of metals showed that Pd/MIL-101-NH_(2)(Cr) outperforms Pd/MIL-101-(Cr) because of the higher electron density of Pd resulting from the electron donor ability of the NH_(2) functional group. However, the same activities were observed for Pd_(70)Ni_(30)/MIL-101(Cr) and Pd_(70)Ni_(30)/MIL-101-NH_(2)(Cr), which is due to a less uniform distribution of Pd nanoparticles in Pd_(70)Ni_(30)/MIL-101-NH_(2)(Cr) originated from amorphization of MIL-101-NH_(2)(Cr) structure during the reduction process. In contrast, Pd_(70)Ni_(30)/MIL-101(Cr) revealed the stable structure and activity during reduction and CO oxidation for a long time.展开更多
Low salinity water is an emerging enhanced oil recovery(EOR)method that causes wettability alteration towards a favorable state to reduce residual oil saturation,while water alternating gas(WAG)is a proven EOR process...Low salinity water is an emerging enhanced oil recovery(EOR)method that causes wettability alteration towards a favorable state to reduce residual oil saturation,while water alternating gas(WAG)is a proven EOR process that enhances oil recovery by controlling mobility of both water and gas.Therefore,combining the two EOR processes as low salinity water-alternating CO2 EOR injection(LSWA CO2)can further improve oil recovery by promoting the synergy of the mechanisms underlying these two methods.Core flooding experiments,contact angle,interfacial tension(IFT),and CO2 solubility measurement in oil and brine were conducted to investigate the viability and performance of LSWA CO2 in sandstone reservoirs.A favorable wettability alteration,along with IFT reduction and mobility control,are the mechanisms that contribute to residual oil mobilization efficiencies during the LSWA CO2 EOR process.In addition,LSWA CO2 core flooding experiments result in a significant incremental oil recovery.Three smart waters were tested in our research,to examine the impact of changing cationic composition on oil recovery.The solutions are designed brines as NaCl(SW1),MgCl2(SW2),and KCl(SW3).Of the three solutions,SW1 yields the highest incremental oil recovery and highest IFT reduction.In addition,it results in a favorable wettability alteration towards a more water-wet state.In all cases,introducing CO2 to the brine/oil system shows a great advantage in terms of enhancing wettability modification,promoting IFT reduction,and controlling the displacement front of the injected fluid through mobility control.展开更多
This study presents a correlation-based approach for predicting the compressibility of sandstone reservoir rocks.The study proposes a matrix of new empirical equations that significantly improve the precision of measu...This study presents a correlation-based approach for predicting the compressibility of sandstone reservoir rocks.The study proposes a matrix of new empirical equations that significantly improve the precision of measuring the pore volume compressibility,with the most optimal fit of results based on a cubic polynomial model.The accuracy of the calculations was validated through comparison with actual data using root mean square method,and the suggested correlations significantly enhance the precise prediction of rock compressibility in sandstone reservoirs.In this study,the source of data collection is consolidated and unconsolidated sandstone from East Asia offshore oilfields.Accordingly,variations in compressibility with net overburden pressure over the course of the field's lifespan have been examined.The results demonstrate the application of regression analysis in establishing a network of linkages between independent and dependent variables.The proposed correlations for consolidated and unconsolidated sandstones offer a remarkable improvement in the accurate calculation of rock compressibility compared to traditional laboratory procedures,with an average error of 2.5%compared to 5-10%for laboratory measurements.The approach of this study offers a cost-effective and time-efficient alternative to remarkedly enhance the overall performance of sandstone reservoirs in the oil and gas industry.展开更多
Surfactant flooding is a common chemical method for enhancing oil recovery.Recently,the simultaneous application of nanoparticles and chemical substances has been considered for improving the efficiency of EOR process...Surfactant flooding is a common chemical method for enhancing oil recovery.Recently,the simultaneous application of nanoparticles and chemical substances has been considered for improving the efficiency of EOR processes.In the present study,the microscopic and macroscopic efficiency of oil recovery in a linear micromodel in three injection cases of Sodium dodecyl sulfate(SDS)as an anionic surfactant,SiO_(2) nanoparticles,and simultaneous injection of nanoparticles and surfactant was investigated.In our study,adding the nanoparticles along with SDS(2000 ppm)decreased Interfacial tension by 84%,while the figure was 74%and only 10%when the surfactant and the nanoparticles were used alone,respectively.Seemingly,although the nanoparticles alone could not reduce IFT values,adding them to surfactant solution could strongly decrease the interfacial tension between oil and water,leading to enhancement of oil recovery.However,our findings showed that an optimum concentration of nanoparticles in surfactant solution must be used.In this regard,in low concentrations of nanoparticles,they were attached to the interface and IFT decreased due to absorption process.Nevertheless,in high concentrations,nanoparticles removed the surfactant from aqueous phase resulting in no free surfactant available in the bulk.Therefore,surfactant effectiveness in reducing IFT and alteration wettability decreased,and as a consequence,oil recovery efficiency dropped compared to lower nanoparticles’concentrations.Moreover,the results of sessile drop experiments and wettability measurements revealed that coating with either the surfactants or the nanoparticles could partially alter the wettability of surface to water-wet,while coating with the surfactants along with the nanoparticles could make a strongly water-wet surface.Seemingly,investigating the microscopic images of pores and throats showed a strong water-wet condition when the surfactant along with the nanoparticles was used.In addition,the results of flooding tests demonstrated that adding the nanoparticles to surfactant solution could increase the ultimate oil recovery significantly.Moreover,microscopic images confirmed that adding the nanoparticles to the surfactant solution can lead to forming oil-in-water and water-in-oil micro-emulsions due to ultra-low IFT.Obviously,this can result in improving the effectiveness of injection fluid to influence a wider range of porous media.展开更多
基金supported by Jiangsu Key Research and Development Program-Modern Agriculture(BE2021353)National Natural Science Foundation of China(No.32072351)+1 种基金Fundamental Research Funds for the Central Universities,China(No.YDZX2023017)Jiangsu Agricultural Science and Technology Independent Innovation Fund(No.CX(22)2026)and Jiangsu University Qinglan Project.
文摘The toxicity of ginkgo kernel is a global concern,restricting its consumption as a medicinal food.This study focuses on eliminating the toxic components,specifically ginkgolic acid,from ginkgo kernel juice.The approach used was probiotic fermentation with autochthonous lactic acid bacteria combined with macroporous resin.Compared to using lactic acid fermentation alone,adding macroporous resin during probiotic fermentation significantly enhanced the removal of toxic ginkgolic acid and 4'-O-methylpyridoxine from ginkgo kernel juice.After 48 h of fermentation with macroporous resin,the contents of ginkgolic acid and 4'-O-methylpyridoxine decreased by more than 69%and 61%,respectively.Interestingly,the adsorption of microbial growth inhibitors,such as ginkgolic acid,4'-O-methylpyridoxine,and phenolics,by the resin did not hinder the growth of lactic acid bacteria or their metabolic activities involving organic acids and monosaccharides.The study further confirmed that microbial adsorption was the primary reason for removing ginkgolic acid during probiotic fermentation.Also,the adsorption mechanism of ginkgolic acid during probiotic fermentation with macroporous resin was explored.From a mass transfer perspective,incorporating macroporous resin during the probiotic fermentation of ginkgo kernel juice reduced the mass transfer resistance for surface diffusion.Consequently,this lowered the contribution of surface diffusion to the overall diffusion process and facilitated the efficient removal of toxic ginkgolic acid.This work can help to understand the physical mechanism regarding detoxification of ginkgo kernel juice by probiotic fermentation,and offer potential strategies to enhance the safety of ginkgo kernel products.
文摘Microbial enhanced oil recovery (MEOR) methods apply injection of bacteria to depleted oil reservoirs to produce oil, which had remained unrecovered after the conventional methods of production. The ability ofthermophilic anaerobic bacteria to produce gas as the main mechanism in potential MEOR in high salinities of 70-100 g/L was investigated in this study. Maximum gas production of up to 350 mL per 700 mL of salty solution was produced at a salinity of 90 g/L stably during 2-4 days of experiment. The experimental results were upscaled to the Snorre Oilfield, Norway, and simulated using ECLIPSE software for 27 months. The best scenarios showed that the increase in oil recovery on average was at 21% and 17.8% respectively. This study demonstrated that anaerobic bacteria used in biogas plants could be an attractive candidate for MEOR implementation due to their ability to withstand high temperature and salinity, and produce gas in large volumes.
文摘Study of the thermodynamic behaviour of CaCl2-H2O-CO2 systems is important in different scientific areas in the chemical and petroleum engineering fields. For example, a system including salt- H20-CO2 is a common system in CO2 geological storage. During carbonate matrix acidizing, this mixture also appears as the spent acid. Hence, study of the behaviour of this system and the solubility of CO2 in CaCl2 brine in different thermodynamic conditions is critical. In this study, CO2 solubility in 0, 1.90 and 4.80 mol/L CaCl2 solutions at 328.15 to 375.15 K and 68.9 to 206.8 bar were measured. These values are normal for oil reservoirs. A popular thermodynamic model is available in the literature for estimating the CO2 solubility in pure water and NaC1 solutions. In this paper, the available model was modified by experimental work to be applicable for CaCl2 as well. Based on the measured data, the component interaction parameters in the base model were adjusted for a CaCl2-H2O-CO2 system. The developed model could predict CO2 solubility in different conditions with remarkable accuracy, particularly for high concentration solutions and at high pressures. This improvement is up to 65% better than in the base model. This model can be used in Darcy scale models for predicting wormhole propagation during carbonate matrix acidizing.
文摘Sulfur removal from liquid fuels has increased in importance in recent years. Although hydrodesulfurization is the usual method for removing sulfur, the elimination of thiophene compounds using this process is difficult. Photocatalysis is an alternative method being developed for thiophene removal at ambient conditions. Among semiconductors, titania has shown good potential as a photo-catalyst; however, quick recombination of electron holes hinders its commercial use. One way to decrease the recombination rate is to combine carbon nanotubes with a semiconductor. In this work, multiwall carbon nanotube (MWCNT) / titania composites were prepared with different mass ratios of MWCNT to titania using tetraethyl orthotitanate (TEOT) and titanium tetra isopropoxide (TTIP) as precursors of titania. Dibenzothiophene (DBT) photocatalytic removal from n-hexane was measured in both the presence and absence of oxygen. The results indicated that the best removal occurred when the MWCNT to titania ratio was 1. When the ratio exceeded this number, DBT removal efficiency decreased due to light scattering. Also, the composites prepared by TEOT exhibited better efficiency in DBT removal. The research findings suggested that the obtained composite was a visible light active photocatalyst and exhibited better performance in the presence of oxygen. Kinetics of photocatalytic DBT removal was a first-order reaction with removal rate constant 0.7 h–1 obtained at optimum conditions.
基金The author would like to appreciate the funding supports of the State of Wyoming and China Scholarship Council.Without their supports,the international collaboration on clean energy technology development would have been impossible.
文摘In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the first reactor is for syngas production and the second is for coal pyrolysis)and double layers pattern(catalyst was at upper layer and coal was at lower layer).Besides,pure gases atmosphere including N2,H2,CO,H2-CO were also tested to investigate the mechanism of the coal pyrolysis under different atmospheres.The pyrolysis products including gas,liquid and char were characterized,the result showed that,compared with the inert atmosphere,the tar yield is improved with the reducing atmospheres,as well as the tar quality.The hydrogen partial pressure is the key point for that improvement.In the atmosphere of H2,the tar yield was increased by 31.3%and the contained BTX(benzene,toluene and xylene)and naphthalene were increased by 27.1%and 133.4%.The double reactors pattern also performed outstandingly,with 25.4%increment of tar yield and 25.0%and 79.4%for the BTX and naphthalene.The double layers pattern is not effective enough due to the low temperature(700°C)in which the Ni-based catalyst was not fully activated.
文摘This study was undertaken to assess the physical, chemical and hydrochemical quality of spring water in the southwestern basin of Jordan during a 60-month follow up monitoring study (April 2009 to April 2014). The samples were analyzed for temperature, conductivity, dissolved oxygen, pH, major cations, major anions and trace metals. The results show that there were considerable variations among the analyzed samples with respect to their physical and chemical parameters, which lie below the maximum permissible levels of the Jordanian and World Health Organization (WHO) drinking water standards. This study shows that the trace metals of spring water in the study area do not generally pose any health or environmental issues. The assessment of water samples indicates that groundwater, in general, is chemically suitable for drinking and agricultural uses.
文摘This paper proposes optimization models of crude oil distillation column for both limited and unlimited feed stock and market value of known products prices. The feed to the crude distillation column was assumed to be crude oil containing naphtha gas, kerosene, petrol and diesel as the light-light key, light key, heavy key and heavy-heavy key respectively. The models determined maximum concentrations of heavy key in the distillate and light key in the bottom for limited feed stock and market condition. Both were impurities in their respective positions of the column. The limiting constraints were sales specification concentration of light key in the distillate [ ], heavy key in the bottom [ ] and an operating loading constraint of flooding above the feed tray. For unlimited feed stock and market condition, the optimization models determined the optimum separation [ and ] and feed flow rate that would give maximum profit with minimum purity sales specification constraints of light key in the distillate and heavy key in the bottom as stated above. The feed loading was limited by the reboiler capacity. However, there is need to simulate the optimization models for an existing crude oil distillation column of a refinery in order to validate the models.
基金The financial supports from the Scientific research start-up funding of Zhoukou Normal University (ZKNUC2016022)National Natural Science Foundation of China (21536003, 21706057, and 21606078)the Natural Science Foundation of Guangxi Province (2016GXNSFAA380190) are gratefully acknowledged
文摘An accurate and reliable estimation of minimum miscibility pressure(MMP) of CO2-oil system is a critical task for the design and implementation of CO2 miscible displacement process.In this study,an improved CO2-oil MMP correlation was developed to predict the MMP values for both pure and impure CO2 injection cases based on ten influential factors,i.e.reservoir temperature(TR),molecular weight of C7+oil components(MWC7+),mole fraction of volatile oil components(xvol),mole fraction of C2-C4 oil components(xC2-C4),mole fraction of C5-C6 oil components(xCs-5-C6),and the gas stream mole fractions of CO2(yCO2),H2S(yH2S),C1(yC1),hydrocarbons(yHC)and N2(yN2).The accuracy of the improved correlation was evaluated against experimental data reported in literature concurrently with those estimated by several renowned correlations.It was found that the improved correlation provided higher prediction accuracy and consistency with literature experimental data than other literature correlations.In addition,the predictive capability of the improved correlation was further validated by predicting an experimentally measured CO2-Oil MMP data,and it showed an accurate result with the absolute deviation of 4.15%.Besides,the differential analysis of the improved correlation was analyzed to estimate the impact of parameters uncertainty in the original MMP data on the calculated results.Also,sensitivity analysis was performed to analyze the influence of each parameter on MMP qualitatively and quantitatively.The results revealed that the increase of xC2-C4,xC5-C6 and yH2 S lead to the decrease of MMP,while the increase of TR,MWC7+,xvol,yCO2,YC1,yHC and yN2 tend to increase the MMP.Overall,the relevance of each parameter with MMP follows the order of TR> xC5-C6> MWC7+> xvol> yH2 S> yHC> yCO2>yC1>yN2>xC2-C4.
基金Supported by the National Natural Science Foundation of China under Grant Nos 21071122, 21371149 and 21101134, and the Natural Science Foundation of Hebei Province under Grant Nos E2010001169, ZD2010112, and 14961107D.
文摘One-dimensional Ⅲ- Ⅴ semiconductor nanostruc- tures show fascinating applications in various fields. These materials have high electron mobil- ity, superior optical properties, and great flexibility in heterostructure design. When applied in ad- vanced nanodevices, the performance is highly de- pendent on the morphology and crystal structure of the nanostructures. Therefore, the full understand- ing and control of crystal structures and morpholo- gies are of importance to develop such applications. As a typical Ⅲ-Ⅴ semiconductor, InP is an especially attractive target for nanowires research due to its extensive uses in various fields. InP nanostructures with different morphologies, such as quantum dots, nanospheres, nanowires, and nanotubes, have been successfully synthesized. However, the facile syn- thesis of InP semiconductor with comb-like morpholo- gies have rarely been reported.
基金the funding support(Project No.:CF9300172922)from National Institute of Clean-and-low-carbon Energy.
文摘With the shape selective zeolite catalyst,toluene alkylation with methanol to para-xylene(MTPX)technology could produce highly pure para-xylene(PX)in one step.The lower feedstock cost and less energy consumption in products separation make it more competitive compared to the current toluene disproportionation route.Thus,MTPX is regarded as the most reasonable production route for PX production.This article reviews the strategies that applied to the preparation of high-performance catalysts for MTPX,with special focus on the precise control of pore dimension and acid sites distribution in zeolite to achieve the highest selectivity to PX.The outlook of the MTPX catalyst is also proposed to guide the catalyst development in the field.
基金University of Agriculture,Faisalabad for research support
文摘A comparative study of Cannabis sativa(Hemp)essential constituents obtained by using Supercritical Fluid Extraction(SCFE),Steam Distillation(SD)and Hydrodistillation(HD)is presented here.The optimized extraction temperatures were 130,110and 50℃for hydrodistillation,steam distillation and supercritical fluid extraction respectively.The essential oil of C.sativa was analyzed by using Gas chromatography mass spectrometry(GC-MS).A total of 33,30and 31components have been identified in HD,SD and SCFE respectively.Yield of essential oil using SCFE(0.039%)was more than HD(0.025%)and SD(0.035%)extraction respectively.The main component of sesquiterpenes obtained by hydrodistillation at 130℃with their percentages included caryophyllene(40.58%),trans-α-bergamotene(5.41%),humulene(10.97%),cis-β-farnesene(8.53%)and monoterpenes includedα-pinene(2.13%),d-limonene(6.46%),p-cymol(0.65%)and cineole(2.58%)respectively.The main component of sesquiterpenes obtained by SD steam distillation at110℃including caryophyllene(38.60%)trans-α-bergamotene(4.22%),humulene(10.26%),cis-β-farnesene(6.67%)and monoterpenes includedα-pinene(3.21%),d-limonene(7.07%),p-cymol(2.59%)and cineole(3.88%)whereas the more percentages of major components were obtained by SCFE at 50℃included caryophyllene(44.31%),trans-α-bergamotene(6.79%),humulene(11.97%)cis-β-farnesene(9.71%)and monoterpenes includedα-pinene(0.45%),d-limonene(2.13%)p-cymol(0.19%)and cineole(1.38%)respectively.We found yield/efficiency,chemical composition,quality of the essential oils by supercritical fluid extraction superior in terms of modern,green,saving energy and a rapid approach as compared to traditional techniques.
文摘Sandstone reservoirs often contain clay particles that can cause damage and reduce permeability during low-salinity water flooding.In this study,the effect of surfactants on fine migration in clay-rich sandstones and its impact on oil recovery was investigated.First,the impact of surfactants on interparticle forces in fine-matrix,fine-fine,and oil-matrix systems was modeled.The results showed that both CTAB(cetyltrimethyl ammonium bromide)and QS(quillaja saponin)cause EDL compaction,weakening the repulsive forces.However,SDS(sodium dodecyl sulfate)and TX(triton X-100)do not affect the EDL.Next,the effect of surfactants on IFT reduction and wettability alteration was experimentally investigated.All surfactants reduced IFT due to the surface excessive concentration mechanism.The wettability alteration experiment illustrated that although QS and CTAB compact EDL around oil and matrix particles leading to attraction force augmentation,they both alter wettability through adsorption on matrix and carboxylic groups present in crude oil,respectively.Surfactant aqueous solutions were then injected into various clay-rich sandstone sanpacks,which resulted in increased oil recovery.However,the mechanisms leading to enhanced oil recovery variedby surfactant type.CTAB increased recovery by 10%through IFT reduction and wettability alteration,while SDS and TX increased recovery by 12%and 9%,respectively,through wettability alteration and extreme fine migration.In contrast,partial fine migration in the QS flooding experiment reached a recovery increase of 18%.Permeability trends through experiments were also recorded.During CTAB injection,permeability did not reduce,while QS aqueous solution reduced rock permeability to 5 m D.SDS and TX reduced the magnitude of permeability to 2 m D.In conclusion,this study demonstrates that surfactants can effectively improve oil recovery in clay-rich sandstones by altering the interparticle forces,reducing IFT,and changing wettability.The results suggest that the type of surfactant used should be carefully selected to achieve the desired recovery increase without affecting the permeability of the reservoir.
文摘This paper reviews some of the major recent advances in single-crystal diamond nanofabrication and its impact in nano-and micromechanical,nanophotonics and optomechanical components.These constituents of integrated devices incorporating specific dopants in the material provide the capacity to enhance the sensitivity in detecting mass and forces as well as magnetic field down to quantum mechanical limits and will lead pioneering innovations in ultrasensitive sensing and precision measurements in the realm of the medical sciences,quantum sciences and related technologies.
基金provided by University of Malaya, Kuala Lumpur (nos.PV009-2012A and UMC/HIR/ MOHE/ENG/13) that helped carry out this research
文摘Recovery of cellulose fibres from paper mill effluent has been studied using common polysacchatides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86 mg/L of fibre and was most effective among the biopolyrners. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5 cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of fioc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.
基金the National Natural Science Foundation of China(81271781)the Natural Science Foundation of Zhejiang Province(LY17H190002)the Higher Education Institutions of Gansu Province of China(2019B-230)。
文摘Leptospirosis,a major zoonotic disease widespread in the world,would infect humans and other animals by direct contacting with the soil or water contaminated by the pathogenic leptospires.This report analyzes the accuracy of polymerase chain reaction(PCR)assay used in the detection of leptospira specific genes in humans.Seventeen published articles which included 2526 samples satisfied all inclusion standards and were applied to meta-analysis.Pooled sensitivity and specificity were 0.73(95%CI 0.70-0.76)and 0.94(95%CI 0.93-0.95),respectively.Heterogeneity was statistically significant among studies,but none of the sources for heterogeneity(disease stage,PCR type,targeted genes)could adequately interpret this finding.Meta-regression advised that real-time PCR(qPCR)targeted 16 s rRNA would be the best choice for early detection of cases during the acute stage of the disease and was accounted as a good screening tool in all stages of the disease.
基金supported by Sharif University of Technology,Nuclear Science and Technology Research Institute,and Iran National Science Foundation.
文摘The solubility of Pd(NO_(3))_(2) in water is moderate whereas it is completely soluble in diluted HNO_(3) solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH_(2)(Cr) were synthesized by aqueous solution of Pd(NO_(3))_(2) and Pd(NO_(3))_(2) solution in dilute HNO_(3) and used for CO oxidation reaction. The catalysts synthesized with Pd(NO_(3))_(2) solution in dilute HNO_(3) showed lower activity. The aqueous solution of Pd(NO_(3))_(2) was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd_(70)Ni_(30)/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd+ Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution of PdNi nanoparticles, and lower dissociation and desorption barriers. Comparison of the catalysts synthesized by MIL-101(Cr) and MIL-101-NH_(2)(Cr) as the supports of metals showed that Pd/MIL-101-NH_(2)(Cr) outperforms Pd/MIL-101-(Cr) because of the higher electron density of Pd resulting from the electron donor ability of the NH_(2) functional group. However, the same activities were observed for Pd_(70)Ni_(30)/MIL-101(Cr) and Pd_(70)Ni_(30)/MIL-101-NH_(2)(Cr), which is due to a less uniform distribution of Pd nanoparticles in Pd_(70)Ni_(30)/MIL-101-NH_(2)(Cr) originated from amorphization of MIL-101-NH_(2)(Cr) structure during the reduction process. In contrast, Pd_(70)Ni_(30)/MIL-101(Cr) revealed the stable structure and activity during reduction and CO oxidation for a long time.
文摘Low salinity water is an emerging enhanced oil recovery(EOR)method that causes wettability alteration towards a favorable state to reduce residual oil saturation,while water alternating gas(WAG)is a proven EOR process that enhances oil recovery by controlling mobility of both water and gas.Therefore,combining the two EOR processes as low salinity water-alternating CO2 EOR injection(LSWA CO2)can further improve oil recovery by promoting the synergy of the mechanisms underlying these two methods.Core flooding experiments,contact angle,interfacial tension(IFT),and CO2 solubility measurement in oil and brine were conducted to investigate the viability and performance of LSWA CO2 in sandstone reservoirs.A favorable wettability alteration,along with IFT reduction and mobility control,are the mechanisms that contribute to residual oil mobilization efficiencies during the LSWA CO2 EOR process.In addition,LSWA CO2 core flooding experiments result in a significant incremental oil recovery.Three smart waters were tested in our research,to examine the impact of changing cationic composition on oil recovery.The solutions are designed brines as NaCl(SW1),MgCl2(SW2),and KCl(SW3).Of the three solutions,SW1 yields the highest incremental oil recovery and highest IFT reduction.In addition,it results in a favorable wettability alteration towards a more water-wet state.In all cases,introducing CO2 to the brine/oil system shows a great advantage in terms of enhancing wettability modification,promoting IFT reduction,and controlling the displacement front of the injected fluid through mobility control.
文摘This study presents a correlation-based approach for predicting the compressibility of sandstone reservoir rocks.The study proposes a matrix of new empirical equations that significantly improve the precision of measuring the pore volume compressibility,with the most optimal fit of results based on a cubic polynomial model.The accuracy of the calculations was validated through comparison with actual data using root mean square method,and the suggested correlations significantly enhance the precise prediction of rock compressibility in sandstone reservoirs.In this study,the source of data collection is consolidated and unconsolidated sandstone from East Asia offshore oilfields.Accordingly,variations in compressibility with net overburden pressure over the course of the field's lifespan have been examined.The results demonstrate the application of regression analysis in establishing a network of linkages between independent and dependent variables.The proposed correlations for consolidated and unconsolidated sandstones offer a remarkable improvement in the accurate calculation of rock compressibility compared to traditional laboratory procedures,with an average error of 2.5%compared to 5-10%for laboratory measurements.The approach of this study offers a cost-effective and time-efficient alternative to remarkedly enhance the overall performance of sandstone reservoirs in the oil and gas industry.
文摘Surfactant flooding is a common chemical method for enhancing oil recovery.Recently,the simultaneous application of nanoparticles and chemical substances has been considered for improving the efficiency of EOR processes.In the present study,the microscopic and macroscopic efficiency of oil recovery in a linear micromodel in three injection cases of Sodium dodecyl sulfate(SDS)as an anionic surfactant,SiO_(2) nanoparticles,and simultaneous injection of nanoparticles and surfactant was investigated.In our study,adding the nanoparticles along with SDS(2000 ppm)decreased Interfacial tension by 84%,while the figure was 74%and only 10%when the surfactant and the nanoparticles were used alone,respectively.Seemingly,although the nanoparticles alone could not reduce IFT values,adding them to surfactant solution could strongly decrease the interfacial tension between oil and water,leading to enhancement of oil recovery.However,our findings showed that an optimum concentration of nanoparticles in surfactant solution must be used.In this regard,in low concentrations of nanoparticles,they were attached to the interface and IFT decreased due to absorption process.Nevertheless,in high concentrations,nanoparticles removed the surfactant from aqueous phase resulting in no free surfactant available in the bulk.Therefore,surfactant effectiveness in reducing IFT and alteration wettability decreased,and as a consequence,oil recovery efficiency dropped compared to lower nanoparticles’concentrations.Moreover,the results of sessile drop experiments and wettability measurements revealed that coating with either the surfactants or the nanoparticles could partially alter the wettability of surface to water-wet,while coating with the surfactants along with the nanoparticles could make a strongly water-wet surface.Seemingly,investigating the microscopic images of pores and throats showed a strong water-wet condition when the surfactant along with the nanoparticles was used.In addition,the results of flooding tests demonstrated that adding the nanoparticles to surfactant solution could increase the ultimate oil recovery significantly.Moreover,microscopic images confirmed that adding the nanoparticles to the surfactant solution can lead to forming oil-in-water and water-in-oil micro-emulsions due to ultra-low IFT.Obviously,this can result in improving the effectiveness of injection fluid to influence a wider range of porous media.