Hydroxyapatite(HAP)is a common bio-adsorbent,which performance depends heavily upon its morphology and microporous structure.In this study,a novel synthesis strategy was proposed for hierarchical porous HAP microspher...Hydroxyapatite(HAP)is a common bio-adsorbent,which performance depends heavily upon its morphology and microporous structure.In this study,a novel synthesis strategy was proposed for hierarchical porous HAP microspheres by a simple"one-pot"hydrothermal reaction.In the strategy,L-glutamic acid serves as soft template to modulate the morphology and inner crystalline of HAP.To evaluate the application potential,doping Ni^(2+) on hierarchical porous HAP microspheres gives metal chelated affinity adsorbents.The prepared adsorbents show a perfect spherical shape,particles size of 96.6μm,relatively specific surface area of 48.5 m^(2)·g^(-1) and hierarchical pores(mesopores:4 nm and macropores:53 nm).By the adsorption evaluation,it reveals that the Ni^(2+)-HAP adsorbents have high adsorption capacities of275.11 and 97.55 m^(2)·g^(-1) for hemoglobin and bovine serum albumin,respectively,which is comparable to other similar adsorbent.Therefore,this work provides a promising method for high-efficiency hydroxyapatite microspheres for proteins purification.展开更多
Perfluoropolyether(PFPE)lubricants are a kind of high-molecular polymer with many excellent properties.However,the use of PFPEs in the nuclear industry can lead to partial decomposition and carrying radionuclides,resu...Perfluoropolyether(PFPE)lubricants are a kind of high-molecular polymer with many excellent properties.However,the use of PFPEs in the nuclear industry can lead to partial decomposition and carrying radionuclides,resulting in a large amount of radioactive waste PFPE lubricants annually.Moreover,radioactive waste PFPE lubricants are difficult to be effectively treated due to their high stability,the risk of possible leakage of radionuclides,and hypertoxic fluorine-containing by-products.In this study,without any precedent,a strategy of Mn O_(2)-catalyzed decomposition and Na_(2)CO_(3)-immobilized conversion was proposed for PFPE lubricant decomposition and fluorine immobilization simultaneously based on the Lewis acid-base and oxygen vacancies concept.A high fluorine conversion efficiency of 95.4%was achieved.Meanwhile,the mechanism of decomposition suggested that Mn O_(2)mainly provided Lewis acid sites and attacked the(basic)fluorine or oxygen atoms in PFPE molecules.The decomposition of PFPE chains was proceed down and volatile fluorine-containing gas was released by partial electron transfer,intramolecular disproportionation reaction,and unzipping fashion.Subsequently,gas by-products could be further oxidized and then immobilized into fluoride salts by carbonate solid absorbents.Overall,this study provides a simple,safe,and potentially practical strategy for the harmless conversion of refractory fluorinated organic wastes,especially perfluoropolymers.展开更多
基金funded by the National Natural Science Foundation of China(21676170)。
文摘Hydroxyapatite(HAP)is a common bio-adsorbent,which performance depends heavily upon its morphology and microporous structure.In this study,a novel synthesis strategy was proposed for hierarchical porous HAP microspheres by a simple"one-pot"hydrothermal reaction.In the strategy,L-glutamic acid serves as soft template to modulate the morphology and inner crystalline of HAP.To evaluate the application potential,doping Ni^(2+) on hierarchical porous HAP microspheres gives metal chelated affinity adsorbents.The prepared adsorbents show a perfect spherical shape,particles size of 96.6μm,relatively specific surface area of 48.5 m^(2)·g^(-1) and hierarchical pores(mesopores:4 nm and macropores:53 nm).By the adsorption evaluation,it reveals that the Ni^(2+)-HAP adsorbents have high adsorption capacities of275.11 and 97.55 m^(2)·g^(-1) for hemoglobin and bovine serum albumin,respectively,which is comparable to other similar adsorbent.Therefore,this work provides a promising method for high-efficiency hydroxyapatite microspheres for proteins purification.
基金Sichuan Science and Technology Program (No.2021YJ0482)the Fundamental Research Funds for the Central Universities (No.2021SCU12087)。
文摘Perfluoropolyether(PFPE)lubricants are a kind of high-molecular polymer with many excellent properties.However,the use of PFPEs in the nuclear industry can lead to partial decomposition and carrying radionuclides,resulting in a large amount of radioactive waste PFPE lubricants annually.Moreover,radioactive waste PFPE lubricants are difficult to be effectively treated due to their high stability,the risk of possible leakage of radionuclides,and hypertoxic fluorine-containing by-products.In this study,without any precedent,a strategy of Mn O_(2)-catalyzed decomposition and Na_(2)CO_(3)-immobilized conversion was proposed for PFPE lubricant decomposition and fluorine immobilization simultaneously based on the Lewis acid-base and oxygen vacancies concept.A high fluorine conversion efficiency of 95.4%was achieved.Meanwhile,the mechanism of decomposition suggested that Mn O_(2)mainly provided Lewis acid sites and attacked the(basic)fluorine or oxygen atoms in PFPE molecules.The decomposition of PFPE chains was proceed down and volatile fluorine-containing gas was released by partial electron transfer,intramolecular disproportionation reaction,and unzipping fashion.Subsequently,gas by-products could be further oxidized and then immobilized into fluoride salts by carbonate solid absorbents.Overall,this study provides a simple,safe,and potentially practical strategy for the harmless conversion of refractory fluorinated organic wastes,especially perfluoropolymers.