Magnesium (Mg) alloys have become a potential material for orthopedic implants due to their unnecessary implant removal, biocompatibility, and mechanical integrity until fracture healing. This study examined the in vi...Magnesium (Mg) alloys have become a potential material for orthopedic implants due to their unnecessary implant removal, biocompatibility, and mechanical integrity until fracture healing. This study examined the in vitro and in vivo degradation of an Mg fixation screw composed of Mg-0.45Zn-0.45Ca (ZX00, in wt.%). With ZX00 human-sized implants, in vitro immersion tests up to 28 days under physiological conditions, along with electrochemical measurements were performed for the first time. In addition, ZX00 screws were implanted in the diaphysis of sheep for 6, 12, and 24 weeks to assess the degradation and biocompatibility of the screws in vivo. Using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), micro-computed tomography (μCT), X-ray photoelectron spectroscopy (XPS), and histology, the surface and cross-sectional morphologies of the corrosion layers formed, as well as the bone-corrosion-layer-implant interfaces, were analyzed. Our findings from in vivo testing demonstrated that ZX00 alloy promotes bone healing and the formation of new bone in direct contact with the corrosion products. In addition, the same elemental composition of corrosion products was observed for in vitro and in vivo experiments;however, their elemental distribution and thicknesses differ depending on the implant location. Our findings suggest that the corrosion resistance was microstructure-dependent. The head zone was the least corrosion-resistant, indicating that the production procedure could impact the corrosion performance of the implant. In spite of this, the formation of new bone and no adverse effects on the surrounding tissues demonstrated that the ZX00 is a suitable Mg-based alloy for temporary bone implants.展开更多
It is highly important to develop ultrastable electrode materials for Li-ion batteries(LIBs),especially in the low temperature.Herein,we report Fe^(3+)-stabilized Ti_(3)C_(2)T_(x) MXene(donated as T/F-4:1)as the anode...It is highly important to develop ultrastable electrode materials for Li-ion batteries(LIBs),especially in the low temperature.Herein,we report Fe^(3+)-stabilized Ti_(3)C_(2)T_(x) MXene(donated as T/F-4:1)as the anode material,which exhibits an ultrastable low-temperature Li-ion storage property(135.2 m A h g^(-1)after300 cycles under the current density of 200 m A g^(-1)at-10℃),compared with the negligible capacity for the pure Ti_(3)C_(2)T_(x) MXene(26 m A h g^(-1)at 200 m A g^(-1)).We characterized as-made T/F samples via the Xray photoelectron spectroscopy(XPS),Fourier transformed infrared(FT-IR)and Raman spectroscopy,and found that the terminated functional groups(-O and-OH)in T/F are Li^(+) storage sites.Fe^(3+)-stabilization makes-O/-OH groups in MXene interlayers become active towards Li^(+),leading to much more active sites and thus an enhanced capacity and well cyclic stability.In contrast,only-O/-OH groups on the top and bottom surfaces of pure Ti_(3)C_(2)T_(x) MXene can be used to adsorb Li^(+),resulting in a low capacity.Transmission electron microscopy(TEM)and XPS data confirm that T/F-4:1 holds the highly stable solid electrolyte interphase(SEI)layer during the cycling at-10℃.Density functional theory(DFT)calculations further uncover that T/F has fast diffusion of Li^(+) and consequent better electrochemical performances than pure Ti_(3)C_(2)T_(x) MXene.It is believed that the new strategy used here will help to fabricate advanced MXene-based electrode materials in the energy storage application.展开更多
文摘Magnesium (Mg) alloys have become a potential material for orthopedic implants due to their unnecessary implant removal, biocompatibility, and mechanical integrity until fracture healing. This study examined the in vitro and in vivo degradation of an Mg fixation screw composed of Mg-0.45Zn-0.45Ca (ZX00, in wt.%). With ZX00 human-sized implants, in vitro immersion tests up to 28 days under physiological conditions, along with electrochemical measurements were performed for the first time. In addition, ZX00 screws were implanted in the diaphysis of sheep for 6, 12, and 24 weeks to assess the degradation and biocompatibility of the screws in vivo. Using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), micro-computed tomography (μCT), X-ray photoelectron spectroscopy (XPS), and histology, the surface and cross-sectional morphologies of the corrosion layers formed, as well as the bone-corrosion-layer-implant interfaces, were analyzed. Our findings from in vivo testing demonstrated that ZX00 alloy promotes bone healing and the formation of new bone in direct contact with the corrosion products. In addition, the same elemental composition of corrosion products was observed for in vitro and in vivo experiments;however, their elemental distribution and thicknesses differ depending on the implant location. Our findings suggest that the corrosion resistance was microstructure-dependent. The head zone was the least corrosion-resistant, indicating that the production procedure could impact the corrosion performance of the implant. In spite of this, the formation of new bone and no adverse effects on the surrounding tissues demonstrated that the ZX00 is a suitable Mg-based alloy for temporary bone implants.
基金supported financially by the Fundamental Research Funds for the Central Universities(Nos.2019RC021,2018JBZ107,2019RC035)the National Natural Science Foundation of China(Nos.51971056,91961125,51802013,21905019)+3 种基金the Key Program for International S&T Cooperation Projects of China from the Ministry of Science and Technology of China(No.2018YFE0124600)the Chemistry and Chemical Engineering Guangdong Laboratory(Nos.1932004 and 1911021)the financial support from Natural Science Foundation of Liaoning Province(No.20180510003)support from the“Excellent One Hundred”Project of Beijing Jiaotong University。
文摘It is highly important to develop ultrastable electrode materials for Li-ion batteries(LIBs),especially in the low temperature.Herein,we report Fe^(3+)-stabilized Ti_(3)C_(2)T_(x) MXene(donated as T/F-4:1)as the anode material,which exhibits an ultrastable low-temperature Li-ion storage property(135.2 m A h g^(-1)after300 cycles under the current density of 200 m A g^(-1)at-10℃),compared with the negligible capacity for the pure Ti_(3)C_(2)T_(x) MXene(26 m A h g^(-1)at 200 m A g^(-1)).We characterized as-made T/F samples via the Xray photoelectron spectroscopy(XPS),Fourier transformed infrared(FT-IR)and Raman spectroscopy,and found that the terminated functional groups(-O and-OH)in T/F are Li^(+) storage sites.Fe^(3+)-stabilization makes-O/-OH groups in MXene interlayers become active towards Li^(+),leading to much more active sites and thus an enhanced capacity and well cyclic stability.In contrast,only-O/-OH groups on the top and bottom surfaces of pure Ti_(3)C_(2)T_(x) MXene can be used to adsorb Li^(+),resulting in a low capacity.Transmission electron microscopy(TEM)and XPS data confirm that T/F-4:1 holds the highly stable solid electrolyte interphase(SEI)layer during the cycling at-10℃.Density functional theory(DFT)calculations further uncover that T/F has fast diffusion of Li^(+) and consequent better electrochemical performances than pure Ti_(3)C_(2)T_(x) MXene.It is believed that the new strategy used here will help to fabricate advanced MXene-based electrode materials in the energy storage application.