Two types of flexible terahertz metamaterials were fabricated on polyethylene naphthalate(PEN) substrates. The unit cell of one type consists of two identical split-ring resonators(SRRs) that are arranged face-to-...Two types of flexible terahertz metamaterials were fabricated on polyethylene naphthalate(PEN) substrates. The unit cell of one type consists of two identical split-ring resonators(SRRs) that are arranged face-to-face(i.e., Flex Meta F); the unit cell of the other type has nothing different but is arranged back-to-back(i.e., Flex Meta B). Flex Meta F and Flex Meta B illustrate the similar transmission dips under zero strain because the excitation of fundamental inductive–capacitive(LC)resonance is mainly dependent on the geometric structure of individual SRR. However, if a gradually variant strain is applied to bend Flex Meta F and Flex Meta B, the new resonant peaks appear: in the case of Flex Meta F, the peaks are located at the lower frequencies; in the case of Flex Meta B, the peaks appear at the frequencies adjacent to the LC resonance. The origin and evolution of strain-induced resonances are studied. The origin is ascribed to the detuning effect and the different responses to strain from Flex Meta F and Flex Meta B are associated with the coupling effect. These findings may improve the understanding on flexible terahertz metamaterials and benefit their applications in flexible or curved devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204146 and 61574144)the Ningbo Key Laboratory of Silicon and Organic Thin Film Optoelectronic Technologies,China+1 种基金the Program for Ningbo Municipal Science and Technology Innovative Research Team,China(Grant No.2015B11002)the K.C.Wong Magna Foundation in Ningbo University,China
文摘Two types of flexible terahertz metamaterials were fabricated on polyethylene naphthalate(PEN) substrates. The unit cell of one type consists of two identical split-ring resonators(SRRs) that are arranged face-to-face(i.e., Flex Meta F); the unit cell of the other type has nothing different but is arranged back-to-back(i.e., Flex Meta B). Flex Meta F and Flex Meta B illustrate the similar transmission dips under zero strain because the excitation of fundamental inductive–capacitive(LC)resonance is mainly dependent on the geometric structure of individual SRR. However, if a gradually variant strain is applied to bend Flex Meta F and Flex Meta B, the new resonant peaks appear: in the case of Flex Meta F, the peaks are located at the lower frequencies; in the case of Flex Meta B, the peaks appear at the frequencies adjacent to the LC resonance. The origin and evolution of strain-induced resonances are studied. The origin is ascribed to the detuning effect and the different responses to strain from Flex Meta F and Flex Meta B are associated with the coupling effect. These findings may improve the understanding on flexible terahertz metamaterials and benefit their applications in flexible or curved devices.