It is known that at low concentrations of TMPyP4, this porphyrin predominantly intercalates between GC pairs at GC-rich sites of duplex DNA and G-quadruplexes of various constructions, and stabilizes these structures....It is known that at low concentrations of TMPyP4, this porphyrin predominantly intercalates between GC pairs at GC-rich sites of duplex DNA and G-quadruplexes of various constructions, and stabilizes these structures. However, there are still some arguable suggestions about the exact binding sites and modes of TMPyP4 to GC-rich regions of DNA in case of helation of divalent ions with help of the porphrin, which makes porphyrin structure asymmetric. We examined TOEPyP4—analogue of TMPyP4—and studied interaction of TOEPyP4 into the calf thymus DNA at presence of nanomole concentrations of one of the most important microelements in cell vital function—Zn ion. On the basis of CD and absorption spectra of the DNA-TOEPyP4 mixture, it was determined that nanomole concentrations of Zn ions changed porphyrin intercalative binding mode to some external binding modes, which initiated transition of the canonic B conformation of DNA into C-like conformation, and incubation of the (DNA-TOEP4) + Zn mixture at 37?C caused B-Z-like transition, but no transition was observed for the DNA-TOEPyP4 mixture. In particular, at 10 mM?NaCl, TOEPyP4/DNA = 0.02, the binding mode change was observed in the concentration range from 150 to 300 nM?Zn, and the B-C-like transition occurred from 150 to 600 nM?Zn. The B-Z transition at TOEPyP4/DNA = 0.015, Zn/DNA = 0.015, NaCI 10 mM, T = 37?C was observed within incubation time interval from 0.3 to 20 hours, and maximal percent of Z-like form was seen when incubation time interval was from 5 to 6 hours.展开更多
The effect of modifying the surface of multiwall carbon nanotubes (CNT’s) by oxygen and nitrogen on the strength characteristics of the fiberglass filled with them was investigated by testing for tension and bending....The effect of modifying the surface of multiwall carbon nanotubes (CNT’s) by oxygen and nitrogen on the strength characteristics of the fiberglass filled with them was investigated by testing for tension and bending. The method of obtaining nitrogen-containing nanostructures is developed. It was shown that in the epoxide system LR285-LH286 hydrophobic CNT’s (outgoing) at introducing into the catalyst polymerization of LH286, increase the strength with respect to unreinforced CNT’s by 48% - 54%. Oxidized CNT’s (200 A?h/kg) introduced into the resin LR285 increase the strength by 59%. The distribution of the filler particles in size, both in the epoxy resin and in the catalyst, depends on their concentration nonlinear, and correlates with the strength characteristics of the composite.展开更多
文摘It is known that at low concentrations of TMPyP4, this porphyrin predominantly intercalates between GC pairs at GC-rich sites of duplex DNA and G-quadruplexes of various constructions, and stabilizes these structures. However, there are still some arguable suggestions about the exact binding sites and modes of TMPyP4 to GC-rich regions of DNA in case of helation of divalent ions with help of the porphrin, which makes porphyrin structure asymmetric. We examined TOEPyP4—analogue of TMPyP4—and studied interaction of TOEPyP4 into the calf thymus DNA at presence of nanomole concentrations of one of the most important microelements in cell vital function—Zn ion. On the basis of CD and absorption spectra of the DNA-TOEPyP4 mixture, it was determined that nanomole concentrations of Zn ions changed porphyrin intercalative binding mode to some external binding modes, which initiated transition of the canonic B conformation of DNA into C-like conformation, and incubation of the (DNA-TOEP4) + Zn mixture at 37?C caused B-Z-like transition, but no transition was observed for the DNA-TOEPyP4 mixture. In particular, at 10 mM?NaCl, TOEPyP4/DNA = 0.02, the binding mode change was observed in the concentration range from 150 to 300 nM?Zn, and the B-C-like transition occurred from 150 to 600 nM?Zn. The B-Z transition at TOEPyP4/DNA = 0.015, Zn/DNA = 0.015, NaCI 10 mM, T = 37?C was observed within incubation time interval from 0.3 to 20 hours, and maximal percent of Z-like form was seen when incubation time interval was from 5 to 6 hours.
文摘The effect of modifying the surface of multiwall carbon nanotubes (CNT’s) by oxygen and nitrogen on the strength characteristics of the fiberglass filled with them was investigated by testing for tension and bending. The method of obtaining nitrogen-containing nanostructures is developed. It was shown that in the epoxide system LR285-LH286 hydrophobic CNT’s (outgoing) at introducing into the catalyst polymerization of LH286, increase the strength with respect to unreinforced CNT’s by 48% - 54%. Oxidized CNT’s (200 A?h/kg) introduced into the resin LR285 increase the strength by 59%. The distribution of the filler particles in size, both in the epoxy resin and in the catalyst, depends on their concentration nonlinear, and correlates with the strength characteristics of the composite.