Tin mono-sulphide(Sn S) nanoparticles(Nps) have been successfully synthesised through ionic liquid assisted hydrothermal method using hydrated tin(II) chloride as a precursor, thiourea as sulphur source precurso...Tin mono-sulphide(Sn S) nanoparticles(Nps) have been successfully synthesised through ionic liquid assisted hydrothermal method using hydrated tin(II) chloride as a precursor, thiourea as sulphur source precursors using 2-Methoxy ethyl methyl imidazolium methane sulfonate ionic liquid as co-solvent. The Reitveld refinement on powder X-ray diffraction(PXRD) confirmed the presence of orthorhombic Sn S structure as major phase along with traces amount of Sn S2 and Sn2 S3. Diffuse reflectance spectrum studies revealed the energy band gap around 1.38 e V. TEM images confirmed the Sn S Nps with average particle size of 40 nm and HRTEM suggest good crystallinity. The electrochemical property for lithium storage behaviour shows an initial discharge capacity of 658 m Ah/g and it retains discharge capacity of 426 m Ah/g for 16 cycles, at current density 100 m A/g. The obtained results indicate that Sn S Nps to be one of the possible promising anode materials for next generation Lithium batteries. Photoluminescence study of Sn S Nps shows a strong green emission at 530 nm. Sn S Nps were also tested for the photocatalytic adsorption of methylene blue and Rhodamine B.展开更多
基金BRNS-BARC,Department of Atomic Energy,Govt.of India(37(2)/14/25/2015/BRNS dated 03/12/2015)for financial help to carry out the research workISRO-RESPOND(Project no.ISRO/RES/3/661/2014-15 Dated 14-07-2014)Govt.of India for financial supportVision Group of Science and Technology,Govt.of Karnataka,for the financial help under the scheme of Seed Money to Young Scientists for research activities.(SMYSR,GRD Number–498)
文摘Tin mono-sulphide(Sn S) nanoparticles(Nps) have been successfully synthesised through ionic liquid assisted hydrothermal method using hydrated tin(II) chloride as a precursor, thiourea as sulphur source precursors using 2-Methoxy ethyl methyl imidazolium methane sulfonate ionic liquid as co-solvent. The Reitveld refinement on powder X-ray diffraction(PXRD) confirmed the presence of orthorhombic Sn S structure as major phase along with traces amount of Sn S2 and Sn2 S3. Diffuse reflectance spectrum studies revealed the energy band gap around 1.38 e V. TEM images confirmed the Sn S Nps with average particle size of 40 nm and HRTEM suggest good crystallinity. The electrochemical property for lithium storage behaviour shows an initial discharge capacity of 658 m Ah/g and it retains discharge capacity of 426 m Ah/g for 16 cycles, at current density 100 m A/g. The obtained results indicate that Sn S Nps to be one of the possible promising anode materials for next generation Lithium batteries. Photoluminescence study of Sn S Nps shows a strong green emission at 530 nm. Sn S Nps were also tested for the photocatalytic adsorption of methylene blue and Rhodamine B.